Using Satellite Images and Deep Learning to Measure Health and Living Standards in IndiaShow others and affiliations
2023 (English)In: Social Indicators Research, ISSN 0303-8300, E-ISSN 1573-0921, Vol. 167, p. 475-505Article in journal (Refereed) Published
Abstract [en]
Using deep learning with satellite images enhances our understanding of human development at a granular spatial and temporal level. Most studies have focused on Africa and on a narrow set of asset-based indicators. This article leverages georeferenced village-level census data from across 40% of the population of India to train deep models that predicts 16 indicators of human well-being from Landsat 7 imagery. Based on the principles of transfer learning, the census-based model is used as a feature extractor to train another model that predicts an even larger set of developmental variables-over 90 variables-included in two rounds of the National Family Health Survey (NFHS). The census-based-feature-extractor model outperforms the current standard in the literature for most of these NFHS variables. Overall, the results show that combining satellite data with Indian Census data unlocks rich information for training deep models that track human development at an unprecedented geographical and temporal resolution.
Place, publisher, year, edition, pages
SPRINGER , 2023. Vol. 167, p. 475-505
Keywords [en]
Measurement of health and living conditions; Indicators; Deep learning; Satellite images; India; Survey; Census
National Category
Economics
Identifiers
URN: urn:nbn:se:liu:diva-193970DOI: 10.1007/s11205-023-03112-xISI: 000978510200001OAI: oai:DiVA.org:liu-193970DiVA, id: diva2:1758323
Note
Funding Agencies|Linkoping University
2023-05-222023-05-222023-10-12