Real-world sequential decision-making tasks are usually complex, and require trade-offs between multiple–often conflicting–objectives. However, the majority of research in reinforcement learning (RL) and decision-theoretic planning assumes a single objective, or that multiple objectives can be handled via a predefined weighted sum over the objectives. Such approaches may oversimplify the underlying problem, and produce suboptimal results. This extended abstract outlines the limitations of using a semi-blind iterative process to solve multi-objective decision making problems. Our extended paper [4], serves as a guide for the application of explicitly multi-objective methods to difficult problems.