liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Numerical prediction of warm pre-stressing effects for a steam turbine steel
Linköping University, Department of Management and Engineering, Solid Mechanics. Linköping University, Faculty of Science & Engineering.ORCID iD: 0000-0002-2543-7378
Linköping University, Department of Management and Engineering, Solid Mechanics. Linköping University, Faculty of Science & Engineering.ORCID iD: 0000-0002-5300-1512
Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.ORCID iD: 0000-0002-7606-5244
Linköping University, Department of Management and Engineering, Solid Mechanics. Linköping University, Faculty of Science & Engineering.
2023 (English)In: Theoretical and applied fracture mechanics (Print), ISSN 0167-8442, E-ISSN 1872-7638, Vol. 125, article id 103940Article in journal (Refereed) Published
Abstract [en]

In warm pre-stressing (WPS), the fracture resistance of cracked steel components is raised when subjected to certain temperature-load histories. WPS’s beneficial effects enhance safety margins and potentially prolong fatigue life. However, understanding and predicting the WPS effects is crucial for employing such benefits. This study utilised pre-cracked compact tension specimens made from steam turbine steel for WPS and baseline fracture toughness testing. Two typical WPS cycles were investigated (L-C-F and L-U-C-F), and an increase in fracture resistance was observed for both cycles. The WPS tests were simulated using finite element analysis to understand its effects and predict the increase in fracture resistance. A local approach was followed based on accumulative plastic strain magnitude ahead of the crack tip. Since cleavage fracture is triggered by active plasticity, the WPS fracture is assumed when accumulated plasticity exceeds the residual plastic zone formed at the crack tip due to the initial pre-load.

Place, publisher, year, edition, pages
Elsevier, 2023. Vol. 125, article id 103940
Keywords [en]
Finite element analysis; Fracture mechanics; Fracture toughness; High temperature steel; Warm pre-stressing
National Category
Applied Mechanics
Identifiers
URN: urn:nbn:se:liu:diva-194734DOI: 10.1016/j.tafmec.2023.103940ISI: 001012091400001Scopus ID: 2-s2.0-85160508688OAI: oai:DiVA.org:liu-194734DiVA, id: diva2:1764921
Available from: 2023-06-09 Created: 2023-06-09 Last updated: 2023-10-26Bibliographically approved
In thesis
1. High-Temperature Durability Prediction of Ferritic-Martensitic Steel
Open this publication in new window or tab >>High-Temperature Durability Prediction of Ferritic-Martensitic Steel
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Materials used for high-temperature steam turbine sections are generally subjected to harsh environments with temperatures up to 625 °C. The superior creep resistance of 9–12 % Cr ferritic-martensitic steels makes them desirable for those critical steam turbine components. Additionally, the demand for fast and frequent steam turbine start-ups, i.e. flexible operations, causes accelerated fatigue damage in critical locations, such as grooves and notches, at the high-temperature inner steam turbine casing. A durability assessment is necessary to understand the material behaviour under such high temperatures and repeated loading, and it is essential for life prediction. An accurate and less conservative fatigue life prediction approach is achieved by going past the crack initiation stage and allowing controlled growth of cracks within safe limits. Besides, beneficial load-temperature history effects, i.e. warm pre-stressing, must be utilised to enhance the fracture resistance to cracks. This dissertation presents the high-temperature durability assessment of FB2 steel, a 9-12 % Cr ferritic-martensitic steam turbine steel.

Initially, isothermal low-cycle fatigue testing was performed on FB2 steel samples. A fatigue life model based on finite element strain range partitioning was utilised to predict fatigue life within the crack initiation phase. Two fatigue damage regimes were identified, i.e. plastic- and creep-dominated damage, and the transition between them depended on temperature and applied total strain. Cyclic deformation and stress relaxation behaviour were investigated to produce an elastic-plastic and creep material model that predicts the initial and mid-life cyclic behaviour of the FB2 steel.

Furthermore, the thermomechanical fatigue crack growth behaviour of FB2 steel was studied. Crack closure behaviour was observed and accounted for numerically and experimentally, where crack growth rate curves collapsed into a single curve. Interestingly, the collapsed crack growth curves coincided with isothermal crack growth tests performed at the minimum temperature of the thermomechanical crack growth tests. In addition, hold times and changes in the minimum temperature of the thermomechanical fatigue cycle did not influence crack closure behaviour.

Finally, warm pre-stressing effects were explored for FB2 steel. A numerical prediction model was produced to predict the increase in the apparent fracture toughness. Warm pre-stressing effects can benefit the turbine life by enhancing fracture resistance and allowing longer fatigue cracks to grow within safe limits.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2023. p. 162
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 2339
Keywords
Ferritic-martensitic steel, Low cycle fatigue, Thermomechanical fatigue, Crack propagation, Fracture mechanics, Finite element modelling
National Category
Applied Mechanics
Identifiers
urn:nbn:se:liu:diva-198206 (URN)10.3384/9789180753241 (DOI)9789180753234 (ISBN)9789180753241 (ISBN)
Public defence
2023-11-10, C3, C Building, Campus Valla, Linköping, 10:15 (English)
Opponent
Supervisors
Note

Funding agency: The European Union's Horizon 2020 research and innovation programme under grant agreement No. 764545 as part of the project TURBO-REFLEX

Available from: 2023-09-29 Created: 2023-09-29 Last updated: 2023-10-02Bibliographically approved

Open Access in DiVA

fulltext(2934 kB)105 downloads
File information
File name FULLTEXT01.pdfFile size 2934 kBChecksum SHA-512
50bb513e944f07da0e4b8c6e1983d6e1374643cac8e03d3bd32dfcdd2955add1fc0c264205d85896478d6ad052e8e6401c2b7b9bcb385a6b574ec6ccf2759b29
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus

Authority records

Azeez, AhmedLeidermark, DanielSegersäll, MikaelEriksson, Robert

Search in DiVA

By author/editor
Azeez, AhmedLeidermark, DanielSegersäll, MikaelEriksson, Robert
By organisation
Solid MechanicsFaculty of Science & EngineeringEngineering Materials
In the same journal
Theoretical and applied fracture mechanics (Print)
Applied Mechanics

Search outside of DiVA

GoogleGoogle Scholar
Total: 105 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 199 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf