liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Discovery of Guinier-Preston zone hardening in refractory nitride ceramics
Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.ORCID iD: 0000-0001-9237-6512
Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.ORCID iD: 0000-0001-7378-8554
Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. Materials Research Laboratory, University of Illinois, Urbana, IL, United States.ORCID iD: 0000-0002-2955-4897
Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics. Linköping University, Faculty of Science & Engineering.ORCID iD: 0000-0002-1379-6656
Show others and affiliations
2023 (English)In: Acta Materialia, ISSN 1359-6454, E-ISSN 1873-2453, Vol. 255, article id 119105Article in journal (Refereed) Published
Abstract [en]

Traditional age hardening mechanisms in refractory ceramics consist of precipitation of fine particles. These processes are vital for widespread wear-resistant coating applications. Here, we report novel Guinier-Preston zone hardening, previously only known to operate in soft light-metal alloys, taking place in refractory ceramics like multicomponent nitrides. The added superhardening, discovered in thin films of Ti-Al-W-N upon high temperature annealing, comes from the formation of atomic-plane-thick W disks populating {111} planes of the cubic matrix, as observed by atomically resolved high resolution scanning transmission electron microscopy and corroborated by ab initio calculations and molecular dynamics simulations. Guinier-Preston zone hardening concurrent with spinodal decomposition is projected to exist in a range of other ceramic solid solutions and thus provides a new approach for the development of advanced materials with outstanding mechanical properties and higher operational temperature range for the future demanding applications.

Place, publisher, year, edition, pages
Elsevier, 2023. Vol. 255, article id 119105
Keywords [en]
Guinier-Preston zone, TiAlN, Ceramics, Age hardening, Spinodal decomposition
National Category
Condensed Matter Physics
Identifiers
URN: urn:nbn:se:liu:diva-196410DOI: 10.1016/j.actamat.2023.119105ISI: 001025995100001OAI: oai:DiVA.org:liu-196410DiVA, id: diva2:1784989
Note

Funding: Swedish Research Council VR [2018-03957, 2021-03652, 2021-04426]; Swedish Energy Agency [51201-1]; Knut and Alice Wallenberg Foundation [KAW2019.0290, CTS 20:150]; Carl Tryggers Stiftelse [21:1272, 2017-00646_9]; Swedish Research Council VR-RFI [VR-2018-0597]; Swedish Foundation for Strategic Research [2021-00171]; Swedish Research Council [RIF21-0026]; Swedish National Infrastructure in Advanced Electron Microscopy [22-4, 2022-03071]; Aforsk Foundation; Competence Center Functional Nanoscale Materials (FunMat-II) VINNOVA;  [KAW2016.0358];  [RIF14-0053]

Available from: 2023-08-01 Created: 2023-08-01 Last updated: 2023-08-31
In thesis
1. Toward Energy-efficient Physical Vapor Deposition: Routes for Replacing Substrate Heating during Magnetron Sputtering by Employing Metal Ion Irradiation
Open this publication in new window or tab >>Toward Energy-efficient Physical Vapor Deposition: Routes for Replacing Substrate Heating during Magnetron Sputtering by Employing Metal Ion Irradiation
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

In this Thesis, magnetron sputtering is perfected as an environmental-friendly deposition technique. I performed systematic studies of a novel approach - hybrid high-power impulse and dc magnetron co-sputtering (HiPIMS/DCMS) with metal-ion-synchronized substrate bias pulses. The technique relies on the use of high-mass metal ion irradiation from the HiPIMS source to densify material deposited by the primary metal targets that operate in the DCMS mode. Thermally-driven adatom mobility, conventionally used to obtain high-quality layers, is replaced by low-energy recoils that are effectively created upon heavy metal ion bombardment of the growing film surface. As a result, the need for external heating is effectively eliminated and the useful growth temperature can be as low as 130 °C.   

Ti-Al-N is chosen as a model materials system for the studies in this thesis due to its relevance for industrial applications and well-known challenges for phase stability control. The role of the metal ion mass on densification, phase content, nanostructure, and mechanical properties of metastable cubic Ti0.50Al0.50N-based thin films is investigated. Three series of (Ti1-yAly)1-xMexN (Me = Cr, Mo, W) films are grown with x varied intentionally by adjusting the DCMS power. There is a strong dependence of film properties on the mass of the HiPIMS-generated metal ions. All layers deposited with Cr+ irradiation exhibit porous nanostructure, high oxygen content, and poor mechanical properties. In contrast, (Ti1-yAly)1-xWxN films are fully-dense even with the lowest W concentration, x = 0.09.  

A strong coupling is found between W+ incident energy Ew+ and minimum W concentration x required to grow dense (Ti1-yAly)1-xWxN layers. With lower x, higher Ew+ is needed to obtain dense films. (Ti1-yAly)1-xWxN film growth is also studied as a function of the relative Al content on the metal lattice, y = Al / (Al + Ti), covering the entire range up to the achievable solubility limit of y ~ 0.67. High-Al content films that are desired in industrial applications (as the high temperature oxidation resistance increases with increasing y) are demonstrated, while precipitation of the softer hexagonal AlN phase is avoided. It is shown that the W+ irradiation from HiPIMS source can be used to grow high-Al content layers with high hardness and low residual stress, while avoiding wurtzite AlN precipitation.  

The critical parameter that controls the growth is shown to be the average momentum transfer per deposited metal adatom. W+ ion irradiation is shown to have a determining role in the densification of TiAlWN films grown by hybrid W-HiPIMS/TiAl-DCMS co-sputtering. Films with the same composition were grown as a function of the number of W+ ions per deposited metal atom, η = W+/ (W + Al + Ti). The latter was varied in a wide range by altering the peak target current density on the W target, as confirmed by time-resolved ion mass spectrometry analyses performed at the substrate plane. I demonstrate that the degree of porosity and the nanoindentation hardness are strong functions of η.   

Finally, high-temperature properties of TiAlWN films grown by hybrid W-HiPIMS/TiAl-DCMS co-sputtering with no external substrate heating is explored, as motivated by application requirements, where the temperature of cutting inserts during machining exceeds 900 °C. A new age hardening mechanism was discovered with Guinier-Preston (GP) zone formation in a ceramic material. Layers with low Al content maintain high hardness well above the annealing temperature characteristic of spinodal decomposition. The evidence from electron microscopy, ab initio calculations, and molecular dynamics simulations, shows that the GP effect originates from the formation of atomic-plane-thick W discs populating {111} planes of the cubic matrix. The results demonstrate for the model materials system of TiAlN that the process energy consumption can be reduced by as much as 64% with respect to conventional methods, with no compromise on coating quality. 

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2023. p. 40
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 2328
Keywords
PVD, Magnetron sputtering, Thin films, HiPIMS, TiAlN, Energy efficiency
National Category
Materials Chemistry
Identifiers
urn:nbn:se:liu:diva-194088 (URN)10.3384/9789180752428 (DOI)9789180752411 (ISBN)9789180752428 (ISBN)
Public defence
2023-09-01, Planck, F-building, Campus Valla, Linköping, 09:15 (English)
Opponent
Supervisors
Note

Funding: The research was primarily financed by the Swedish Research Council (VR) Grant 2018-03957 and the Swedish Energy Agency Grant 51201-1. Additional support was also received from a Knut and Alice Wallenberg Foundation Scholar Grant (Hultman: KAW2016.0358), the Competence Center Functional Nanoscale Materials (FunMat-II) VINNOVA grant 2016-05156,  the VINNOVA grant 2019-04882, the Carl Tryggers Stiftelse contracts CTS 17:166, CTS 15:219 and CTS 14:431.The work supported by the Swedish research council VR-RFI (2017-00646_9) for the accelerator-based ion-technological center and from the Swedish Foundation for Strategic Research (Per Persson: RIF14-0053) for the Tandem accelerator laboratory in Uppsala University is also acknowledged.

Updates:2023-05-24 The thesis was first published online. 2023-05-29 The cover was changed in the published version to match the printed version. Before this date the PDF has been downloaded 38 times.

Available from: 2023-05-24 Created: 2023-05-24 Last updated: 2023-08-01Bibliographically approved

Open Access in DiVA

fulltext(19460 kB)125 downloads
File information
File name FULLTEXT01.pdfFile size 19460 kBChecksum SHA-512
8773cf01c8e29e37fa712562361ae36053a7bcfb2d1a1e220b3d6c48f64584b3e1dcfb2e0215c652ce74dfe0a839ef3233c1331c7e5d1876e063db96c54dcfe5
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Authority records

Pshyk, Oleksandr V.Li, XiaoPetrov, IvanSangiovanni, Davide GiuseppePalisaitis, JustinasHultman, LarsGreczynski, Grzegorz

Search in DiVA

By author/editor
Pshyk, Oleksandr V.Li, XiaoPetrov, IvanSangiovanni, Davide GiuseppePalisaitis, JustinasHultman, LarsGreczynski, Grzegorz
By organisation
Thin Film PhysicsFaculty of Science & EngineeringTheoretical Physics
In the same journal
Acta Materialia
Condensed Matter Physics

Search outside of DiVA

GoogleGoogle Scholar
Total: 131 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 341 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf