liu.seSearch for publications in DiVA
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Spin polarization in modulation-doped GaAs quantum wires
Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.ORCID-id: 0000-0002-9863-2502
Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
2008 (engelsk)Inngår i: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 77, nr 16, s. 165306-1-165306-7, artikkel-id 165306Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

We study spin polarization in a split-gate quantum wire focusing on the effect of a realistic smooth potential due to remote donors. Electron interaction and spin effects are included within the density functional theory in the local spin density approximation. We find that depending on the electron density, the spin polarization exhibits qualitatively different features. For the case of relatively high electron density, when the Fermi energy EF exceeds a characteristic strength of a long-range impurity potential Vdonors, the density spin polarization inside the wire is practically negligible and the wire conductance is spin-degenerate. When the density is decreased such that EF approaches Vdonors, the electron density and conductance quickly become spin polarized. With further decrease of the density the electrons are trapped inside the lakes (droplets) formed by the impurity potential and the wire conductance approaches the pinch-off regime. We discuss the limitations of the density functional theory in the local spin density approximation in this regime and compare the obtained results with available experimental data.

sted, utgiver, år, opplag, sider
American Physical Society , 2008. Vol. 77, nr 16, s. 165306-1-165306-7, artikkel-id 165306
HSV kategori
Identifikatorer
URN: urn:nbn:se:liu:diva-11757DOI: 10.1103/PhysRevB.77.165306OAI: oai:DiVA.org:liu-11757DiVA, id: diva2:18188
Merknad

Original publication: M. Evaldsson, S. Ihnatsenka, and I. V. Zozoulenko, Spin polarization in modulation-doped GaAs quantum wires, 2008, Physical Review B, (77), 165306. http://dx.doi.org/10.1103/PhysRevB.77.165306. Copyright: The America Physical Society, http://prb.aps.org/

Tilgjengelig fra: 2008-05-08 Laget: 2008-05-08 Sist oppdatert: 2018-09-06bibliografisk kontrollert
Inngår i avhandling
1. Quantum transport and spin effects in lateral semiconductor nanostructures and graphene
Åpne denne publikasjonen i ny fane eller vindu >>Quantum transport and spin effects in lateral semiconductor nanostructures and graphene
2008 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

This thesis studies electron spin phenomena in lateral semi-conductor quantum dots/anti-dots and electron conductance in graphene nanoribbons by numerical modelling. In paper I we have investigated spin-dependent transport through open quantum dots, i.e., dots strongly coupled to their leads, within the Hubbard model. Results in this model were found consistent with experimental data and suggest that spin-degeneracy is lifted inside the dot – even at zero magnetic field.

Similar systems were also studied with electron-electron effects incorporated via Density Functional Theory (DFT) in the Local Spin Density Approximation (LSDA) in paper II and III. In paper II we found a significant spin-polarisation in the dot at low electron densities. As the electron density increases the spin polarisation in the dot gradually diminishes. These findings are consistent with available experimental observations. Notably, the polarisation is qualitatively different from the one found in the Hubbard model.

Paper III investigates spin polarisation in a quantum wire with a realistic external potential due to split gates and a random distribution of charged donors. At low electron densities we recover spin polarisation and a metalinsulator transition when electrons are localised to electron lakes due to ragged potential profile from the donors. In paper IV we propose a spin-filter device based on resonant backscattering of edge states against a quantum anti-dot embedded in a quantum wire. A magnetic field is applied and the spin up/spin down states are separated through Zeeman splitting. Their respective resonant states may be tuned so that the device can be used to filter either spin in a controlled way.

Paper V analyses the details of low energy electron transport through a magnetic barrier in a quantum wire. At sufficiently large magnetisation of the barrier the conductance is pinched off completely. Furthermore, if the barrier is sharp we find a resonant reflection close to the pinch off point. This feature is due to interference between a propagating edge state and quasibond state inside the magnetic barrier.

Paper VI adapts an efficient numerical method for computing the surface Green’s function in photonic crystals to graphene nanoribbons (GNR). The method is used to investigate magnetic barriers in GNR. In contrast to quantum wires, magnetic barriers in GNRs cannot pinch-off the lowest propagating state. The method is further applied to study edge dislocation defects for realistically sized GNRs in paper VII. In this study we conclude that even modest edge dislocations are sufficient to explain both the energy gap in narrow GNRs, and the lack of dependance on the edge structure for electronic properties in the GNRs.

sted, utgiver, år, opplag, sider
Linköping: Linköping University Electronic Press, 2008. s. 66
Serie
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1202
Emneord
Electronic transport, Spin related phenomena, Quantum dots, Quantum wires, Two-dimensional electron gas, 2DEG, Graphene
HSV kategori
Identifikatorer
urn:nbn:se:liu:diva-12410 (URN)978-91-7393-835-8 (ISBN)
Disputas
2008-09-19, K3, Kåkenhus, Campus Norrköping, Linköpings universitet, Norrköping, 10:15 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2008-09-24 Laget: 2008-09-03 Sist oppdatert: 2009-03-10bibliografisk kontrollert

Open Access i DiVA

fulltekst(438 kB)304 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 438 kBChecksum
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstLink to Ph.D. Thesis

Personposter BETA

Evaldsson, MartinIhnatsenka, SiarheiZozoulenko, Igor V.

Søk i DiVA

Av forfatter/redaktør
Evaldsson, MartinIhnatsenka, SiarheiZozoulenko, Igor V.
Av organisasjonen
I samme tidsskrift
Physical Review B. Condensed Matter and Materials Physics

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 304 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 427 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf