liu.seSök publikationer i DiVA
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Machine Learning In Design Engineering and Manufacturing
Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Produktrealisering. Linköpings universitet, Tekniska fakulteten.ORCID-id: 0000-0002-5950-4962
2023 (Engelska)Licentiatavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Artificial intelligence (AI) has made significant strides in various fields, challenging conventional notions of computer capabilities. However, while data science research primarily concentrates on refining AI models, there are numerous challenges associated with integrating AI into industrial applications.

Knowledge-Based Engineering, with its potential to streamline the production cycle by reusing engineering knowledge and intent, emerges as a promising avenue for AI in the industry. When engineering knowledge is effectively processed and categorized, neural networks naturally emerge as potent tools for automation.

This thesis presents three case studies that demonstrate the practicality of supervised learning, particularly in the domain of neural networks, to address manufacturing automation challenges. These case studies span various stages of the manufacturing system, encompassing engineering design, production planning, and quality control phases. The first application employs supervised learning to automate the generation of engineering drawings, while the third employs optical character recognition to expedite the quality control process for complex engineering drawings. The second application centers on the estimation of fixturing clamps for welding operations in automobile parts.

In summary, this thesis strives to make a meaningful contribution to the field of design engineering and manufacturing by examining the potential of AI in enhancing processes and addressing automation hurdles. By presenting case studies that showcase the utility of machine learning models in production settings, this thesis aims to stimulate further research in this evolving field.

Ort, förlag, år, upplaga, sidor
Linköping: Linköping University Electronic Press, 2023. , s. 48
Serie
Linköping Studies in Science and Technology. Licentiate Thesis, ISSN 0280-7971 ; 1979
Nationell ämneskategori
Produktionsteknik, arbetsvetenskap och ergonomi
Identifikatorer
URN: urn:nbn:se:liu:diva-199612DOI: 10.3384/9789180754569ISBN: 9789180754552 (tryckt)ISBN: 9789180754569 (digital)OAI: oai:DiVA.org:liu-199612DiVA, id: diva2:1819147
Presentation
2023-12-15, ACAS, Linköping University, IEI, A-building, Linköping, 10:15 (Engelska)
Opponent
Handledare
Forskningsfinansiär
Vinnova, 2020-02974Vinnova, 2021-02481Tillgänglig från: 2023-12-15 Skapad: 2023-12-13 Senast uppdaterad: 2023-12-15Bibliografiskt granskad
Delarbeten
1. Automated and Customized CAD Drawings by Utilizing Machine Learning Algorithms: A Case Study
Öppna denna publikation i ny flik eller fönster >>Automated and Customized CAD Drawings by Utilizing Machine Learning Algorithms: A Case Study
2022 (Engelska)Ingår i: ASME 2022 International Design Engineering Technical Conferences and Computers and Information in Engineering ConferenceAugust 14–17, 2022St. Louis, Missouri, USA: Volume 3B: 48th Design Automation Conference (DAC), St. Louis, MO, USA, 2022, Vol. BKonferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

This paper describes a methodology for automation of measurements in Computer-Aided Design (CAD) software by enabling the use of supervised learning algorithms. The paper presents a proof of concept of how dimensions are placed automatically in the drawing at predicted positions. The framework consists of two trained neural networks and a rule-based system. Four steps compound the methodology. 1. Create a data set of labeled images for training a pre-built convolutional neural network (YOLOv5) using CAD automatic procedures. 2. Train the model to make predictions on 2D drawing imagery, identifying their relevant features. 3. Reuse the information extracted from YOLOv5 in a new neural network to produce measurement data. The output of this model is a matrix containing measurement location and size data. 4. Convert the final data output into actual measurements of an unseen geometry using a rule-based system for automatic dimension generation. Although the rule-based system is highly dependent on the problem and the CAD software, both supervised learning models exhibit high performance and reusability. Future work aims to make the framework suitable for more complex products. The methodology presented is promising and shows potential for minimizing human resources in repetitive CAD work, particularly in the task of creating engineering drawings.

Ort, förlag, år, upplaga, sidor
St. Louis, MO, USA: , 2022
Nationell ämneskategori
Teknik och teknologier
Identifikatorer
urn:nbn:se:liu:diva-196468 (URN)10.1115/DETC2022-88971 (DOI)978-0-7918-8623-6 (ISBN)
Konferens
ASME 2022 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
Projekt
iProd
Tillgänglig från: 2023-08-07 Skapad: 2023-08-07 Senast uppdaterad: 2023-12-13
2. Application of optimized convolutional neural network to fixture layout in automotive parts
Öppna denna publikation i ny flik eller fönster >>Application of optimized convolutional neural network to fixture layout in automotive parts
2023 (Engelska)Ingår i: The International Journal of Advanced Manufacturing Technology, ISSN 0268-3768, E-ISSN 1433-3015Artikel i tidskrift (Refereegranskat) Epub ahead of print
Abstract [en]

Fixture layout is a complex task that significantly impacts manufacturing costs and requires the expertise of well-trained engineers. While most research approaches to automating the fixture layout process use optimization or rule-based frameworks, this paper presents a novel approach using supervised learning. The proposed framework replicates the 3-2-1 locating principle to layout fixtures for sheet metal designs. This principle ensures the correct fixing of an object by restricting its degrees of freedom. One main novelty of the proposed framework is the use of topographic maps generated from sheet metal design data as input for a convolutional neural network (CNN). These maps are created by projecting the geometry onto a plane and converting the Z coordinate into gray-scale pixel values. The framework is also novel in its ability to reuse knowledge about fixturing to lay out new workpieces and in its integration with a CAD environment as an add-in. The results of the hyperparameter-tuned CNN for regression show high accuracy and fast convergence, demonstrating the usability of the model for industrial applications. The framework was first tested using automotive b-pillar designs and was found to have high accuracy (approximate to 100%) in classifying these designs. The proposed framework offers a promising approach for automating the complex task of fixture layout in sheet metal design.

Ort, förlag, år, upplaga, sidor
SPRINGER LONDON LTD, 2023
Nyckelord
Design automation; Machine learning; Fixtures; CNN; Hyperparameter tuning; EfficientNet
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
urn:nbn:se:liu:diva-192681 (URN)10.1007/s00170-023-10995-0 (DOI)000938262100003 ()
Anmärkning

Funding Agencies|Linkping University; Vinnova-FFI (Fordonsstrategisk forskning ochinnovation) [2020-02974]

Tillgänglig från: 2023-03-29 Skapad: 2023-03-29 Senast uppdaterad: 2023-12-13
3. Optical character recognition on engineering drawings to achieve automation in production quality control
Öppna denna publikation i ny flik eller fönster >>Optical character recognition on engineering drawings to achieve automation in production quality control
2023 (Engelska)Ingår i: Frontiers in Manufacturing Technology, E-ISSN 2813-0359, Vol. 3Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Introduction: Digitization is a crucial step towards achieving automation in production quality control for mechanical products. Engineering drawings are essential carriers of information for production, but their complexity poses a challenge for computer vision. To enable automated quality control, seamless data transfer between analog drawings and CAD/CAM software is necessary.

Methods: This paper focuses on autonomous text detection and recognition in engineering drawings. The methodology is divided into five stages. First, image processing techniques are used to classify and identify key elements in the drawing. The output is divided into three elements: information blocks and tables, feature control frames, and the rest of the image. For each element, an OCR pipeline is proposed. The last stage is output generation of the information in table format.

Results: The proposed tool, called eDOCr, achieved a precision and recall of 90% in detection, an F1-score of 94% in recognition, and a character error rate of 8%. The tool enables seamless integration between engineering drawings and quality control.

Discussion: Most OCR algorithms have limitations when applied to mechanical drawings due to their inherent complexity, including measurements, orientation, tolerances, and special symbols such as geometric dimensioning and tolerancing (GD&T). The eDOCr tool overcomes these limitations and provides a solution for automated quality control.

Conclusion: The eDOCr tool provides an effective solution for automated text detection and recognition in engineering drawings. The tool's success demonstrates that automated quality control for mechanical products can be achieved through digitization. The tool is shared with the research community through Github.

Ort, förlag, år, upplaga, sidor
Frontiers Media S.A., 2023
Nyckelord
optical character recognition, image segmentation, object detection, engineering drawings, quality control, keras-ocr
Nationell ämneskategori
Teknik och teknologier Produktionsteknik, arbetsvetenskap och ergonomi
Identifikatorer
urn:nbn:se:liu:diva-195416 (URN)10.3389/fmtec.2023.1154132 (DOI)
Forskningsfinansiär
Vinnova, 2021-02481
Tillgänglig från: 2023-06-20 Skapad: 2023-06-20 Senast uppdaterad: 2023-12-13Bibliografiskt granskad
4. Model Architecture Exploration Using Chatgpt for Specific Manufacturing Applications
Öppna denna publikation i ny flik eller fönster >>Model Architecture Exploration Using Chatgpt for Specific Manufacturing Applications
2023 (Engelska)Ingår i: ASME IDETC-CIE, 2023, Vol. 2Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Selecting an appropriate machine learning model architecture for manufacturing tasks requires expertise in both computer science and manufacturing. However, integrating state-of-the-art machine learning models and manufacturing processes is often challenging due to the distance between these fields. OpenAI’s popular language model, ChatGPT, has the potential to bridge this gap.

This paper proposes guidelines and questions to explore model architecture options and extract valuable information from ChatGPT’s natural language processing capabilities. While ChatGPT is a powerful tool, it is important to verify any answers obtained against reliable sources before making any decisions. The guidelines compose a flowchart with four queries to give ChatGPT enough context and exisiting input data information. ChatGPT suggestions will be directed towards input processing, output, and architecture proposals. The last query produces keywords based on the chat for a background study on the topic.

A manufacturing case study was conducted to demonstrate the effectiveness of these guidelines. The study involved creating a model to forecast fixturing locations for welding processes in the automotive sector. After conducting four separate interviews with ChatGPT, the authors discuss the selection of architecture based on ChatGPT suggestions and contrast it with previous literature.

The proposed guidelines are expected to be useful in a variety of manufacturing contexts, as they offer a structured approach to exploring model architecture options using ChatGPT’s capabilities, ultimately leading to new and innovative applications of machine learning in this field.

Nyckelord
fixture layout, machine learning, ChatGPT, manufacturing planning, model exploration
Nationell ämneskategori
Produktionsteknik, arbetsvetenskap och ergonomi
Identifikatorer
urn:nbn:se:liu:diva-199611 (URN)10.1115/DETC2023-116483 (DOI)978-0-7918-8729-5 (ISBN)
Konferens
IDETC-CIE 43rd Computers and Information in Engineering
Forskningsfinansiär
Vinnova, 2020-02974
Tillgänglig från: 2023-12-13 Skapad: 2023-12-13 Senast uppdaterad: 2023-12-13

Open Access i DiVA

fulltext(6658 kB)123 nedladdningar
Filinformation
Filnamn FULLTEXT02.pdfFilstorlek 6658 kBChecksumma SHA-512
e88d5ae4264c16cdcd093a28d910a8c0966a24c16bbebd5ce7f44a3584f06dd8889bf35147b9e2f5c76ee9f64d2979f7f4dff932a45c10452ae8a82d9989ca5a
Typ fulltextMimetyp application/pdf
Beställ online >>

Övriga länkar

Förlagets fulltext

Person

Villena Toro, Javier

Sök vidare i DiVA

Av författaren/redaktören
Villena Toro, Javier
Av organisationen
ProduktrealiseringTekniska fakulteten
Produktionsteknik, arbetsvetenskap och ergonomi

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 123 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 504 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf