liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Use of Panel Code Modeling in a Framework for Aircraft Concept Optimization
Linköping University, Department of Management and Engineering, Machine Design. Linköping University, The Institute of Technology.
Linköping University, Department of Management and Engineering, Fluid and Mechanical Engineering Systems. Linköping University, The Institute of Technology.
Linköping University, Department of Management and Engineering, Machine Design. Linköping University, The Institute of Technology.
2006 (English)In: 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, 6-8 September, Portsmouth, Virginia, USA, 2006, p. 7084-Conference paper, Published paper (Other academic)
Abstract [en]

 

 

In this study the use of a high-order panel code within a framework for aircraft concept design is discussed. The framework is intended to be a multidisciplinary optimization tool to be adopted from the very beginning of the conceptual design phase in order to define and refine the aircraft design, with respect to its aerodynamic, stability and control, structure and basic aircraft systems. The presented work is aimed at developing a module for aerodynamic analysis of concepts as a basis for a direct search optimization of the concept layout. The design criterion, used in the example presented here, is to minimize the maximum take-off weight required to fulfil the mission. Classic and simple equations are used together with the data generated by the panel code solver to calculate the aircraft’s performances. Weights are calculated by means of statistical group weight equations, but the weight could also be calculated from a CAD-model. The design of an Unmanned Combat Air Vehicle is used as test case for three different optimization algorithms: one gradient method based (Fmincon), one non-gradient based (Complex) and one Genetic Algorithm (GA). Comparison of results and performances shows that the Genetic Algorithm is best fitted for the specific problem, having the by far best hit rate, even if it is at a cost of longer computing time. The Complex algorithm requires less iterations and is also able to find the optimum solution, but with a worse hit rate, while Fmincon can not reach to a global optimum. The suggested optimized configuration for the aircraft is very similar to the Boeing X-45C and Northrop Grumman X-47B.

Place, publisher, year, edition, pages
2006. p. 7084-
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:liu:diva-13306OAI: oai:DiVA.org:liu-13306DiVA, id: diva2:18276
Available from: 2011-11-10 Created: 2008-05-21 Last updated: 2011-12-16Bibliographically approved
In thesis
1. On Aircraft Conceptual Design: A Framework for Knowledge Based Engineering and Design Optimization
Open this publication in new window or tab >>On Aircraft Conceptual Design: A Framework for Knowledge Based Engineering and Design Optimization
2008 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis presents a design framework where analytical tools are linked together and operated from an efficient system level interface. The application field is aircraft conceptual design. Particular attention has been paid to CAD system integration and design optimization.

Aircraft design is an inherently multidisciplinary process. The goal is to search for the design that, in the best of possible ways, fulfills the requirements. It is therefore desirable to be able to effectively investigate and analyze solutions from a variety of points of view, weighting together the results and gathering a general figure of merit. At the same time, increasing competition on a global market forces to shorten the design process and to reduce costs. Thus a system that allows a tight and efficient integration of different disciplines and improving data flow and storage plays a key role.

Integrating a CAD system to the framework is of central relevance. The geometrical model includes most of the information; specific data, required to carry out particular analysis, can be extracted from it. This is possible adopting parametric associative models that are controlled from a spreadsheet user interface. Strategies for building CAD models with a very high degree of flexibility are presented. Not only the external shape can be changed, but also the internal structure can be completely modified. Structural elements can be added or removed, and their position and shaping changed.

In this work the design of an Unmanned Aerial Vehicle is used as test case for comparing three different optimization algorithms. The presented framework is also used for automatically design Micro Aerial Vehicles, starting from a short list of requirements and ending with a physical prototype produced by a rapid prototyping machine.

Place, publisher, year, edition, pages
Institutionen för ekonomisk och industriell utveckling, 2008. p. 38
Series
Linköping Studies in Science and Technology. Thesis, ISSN 0280-7971 ; 1366
National Category
Information Systems
Identifiers
urn:nbn:se:liu:diva-11873 (URN)978-91-7393-880-8 (ISBN)
Presentation
2008-05-23, A33, Hus A, Campus Valla, Linköpings universitet, Linköping, 10:15 (English)
Opponent
Supervisors
Available from: 2008-05-21 Created: 2008-05-21 Last updated: 2020-03-29Bibliographically approved
2. Geometry Based Design Automation: Applied to Aircraft Modelling and Optimization
Open this publication in new window or tab >>Geometry Based Design Automation: Applied to Aircraft Modelling and Optimization
2012 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Product development processes are continuously challenged by demands for increased efficiency. As engineering products become more and more complex, efficient tools and methods for integrated and automated design are needed throughout the development process. Multidisciplinary Design Optimization (MDO) is one promising technique that has the potential to drastically improve concurrent design. MDO frameworks combine several disciplinary models with the aim of gaining a holistic perspective of a system, while capturing the synergies between different subsystems. Among all disciplines, the geometric model is recognized as playing a key role, because it collects most of the data required to any other disciplinary analysis. In the present thesis, methodologies to enable multidisciplinary optimization in early aircraft design phases are studied. In particular, the research aims at putting the CAD geometric model in the loop. This requires the ability to automatically generate or update the geometric model, here referred to as geometry-based design automation.

The thesis proposes the use of Knowledge Based Engineering (KBE) techniques to achieve design reuse and automation. In particular, so called High Level CAD templates (HLCts) are suggested to automate geometry generation and updates. HLCts can be compared to parametric LEGO® blocks containing a set of design and analysis parameters. These are produced and stored in libraries, giving engineers or a computer agent the possibility to first topologically select the templates and then modify the shape of each template parametrically.

Since parameterization is central to modelling by means of HLCts, a thorough analysis of the subject is also performed. In most of the literature on MDO and KBE two recurring requirements concerning the geometrical model are expressed: the model should be flexible and robust. However, these requirements have never been properly formulated or defined. Hence, in the thesis a mathematical formulation for geometry model robustness and flexibility are proposed. These formulations ultimately allow the performance of geometric models to be precisely measured and compared.

Finally, a prototyping and validation process is presented. The aim is to quickly and cost-effectively validate analytical results from an MDO process. The proposed process adopts different manufacturing techniques depending on the size and purpose of the intended prototype. In the last part of the thesis, three application examples are presented. The examples are chosen from research projects that have been carried out at Linköping University and show how the proposed theoretical results have been successfully employed in practice.

Abstract [sv]

Kraven på ökad effektivitet utmanar ständigt  produktutvecklingsprocessen. I och med att ingenjörsprodukter blir allt mer komplexa, växer genom hela utvecklingsprocessen behovet av verktyg och metoder för integrerad och automatiserad design. Multidisciplinär Design Optimering (MDO) är en lovande teknik som kan drastiskt förbättra parallell design. I ett MDO ramverk är flera disciplinära modeller sammankopplade för att uppnå ett holistiskt systemperspektiv, men där synergierna mellan olika delsystem också kan fångas upp. Bland alla möjliga discipliner spelar geometrimodellen en central roll, eftersom den innefattar en stor del av all information som är nödvändig för andra disciplinära analyser.

I avhandlingen studeras ett flertal metoder för att möjliggöra multidisciplinär optimering i de tidigaste faserna av flygplansdesign. I synnerlighet är forskningen riktad mot att införa geometriska CAD modeller i designloopen. Det blir därmed nödvändigt att kunna automatiskt generera eller uppdatera geometriska modeller, vilket i avhandlingen kallas för ”geometribaserad design automation”.

Avhandlingen förordar att Knowledge Based Engineering (KBE) tekniker används för att konstruktioner skall kunna automatiseras och återanvändas. Så kallade Hög Nivå CAD mallar (på engelska High Level CAD templates – HLCts) föreslås för att automatiskt generera och uppdatera geometrimodeller. HLCts kan jämföras med parametriska LEGO® klossar som innehåller variabler för design och analys. Mallarna kan samlas i bibliotek; därefter har konstruktörer eller dator agenter möjligheten att först topologiskt välja en mall och sedan ändra på dess utförande genom utvalda parametrar.

Eftersom parameterisering är ett centralt begrepp för HLCt principen, föreslås även en fördjupad analys av ämnet. I stor del av MDO och KBE litteraturen ställs det två återkommande krav på geometrimodellen: modellen bör vara flexibel och robust. Eftersom dessa krav aldrig har getts en formell formulering, förordas i avhandlingen en matematisk beskrivning av modellrobusthet och - flexibilitet. Tack vore formuleringen är det möjligt att noggrant mäta och jämföra till vilken grad geometriska modeller fungerar.

Slutligen presenteras en valideringsprocess baserad på kostnadseffektiva prototyper som används för att snabbt bekräfta analytiska resultat från MDO ramverket. Den föreslagna processen nyttjar olika tillverkningsmetoder, beroende på prototypens tänkta storlek och användning. I sista delen av avhandlingen presenteras även tre applikationsexempel, valda från forskningsprojekt som har bedrivits på Linköpings universitet och som visar hur de teoretiska resultaten har kommit till användning i praktiken.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2012. p. 87
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1418
National Category
Mechanical Engineering
Identifiers
urn:nbn:se:liu:diva-73109 (URN)978-91-7519-986-3 (ISBN)
Public defence
2012-01-27, C4, Hus C, Campus Valla, Linköpings universitet, Linköping, 10:15 (English)
Opponent
Supervisors
Available from: 2011-12-16 Created: 2011-12-16 Last updated: 2019-12-08Bibliographically approved

Open Access in DiVA

fulltext(316 kB)1340 downloads
File information
File name FULLTEXT01.pdfFile size 316 kBChecksum SHA-512
b4ff616ebcd3a90616fbd8612248e4fd1d870a824fd59b46b27969834466021c74ec894ac07ab317abcb0de1680d538d346ca4395fcd50919b18b13ad879c955
Type fulltextMimetype application/pdf

Other links

http://pdf.aiaa.org/preview/CDReadyMMAOC06_1384/PV2006_7084.pdfLink to Licentiate thesis

Authority records

Amadori, KristianJouannet, ChristopherKrus, Petter

Search in DiVA

By author/editor
Amadori, KristianJouannet, ChristopherKrus, Petter
By organisation
Machine DesignThe Institute of TechnologyFluid and Mechanical Engineering Systems
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
Total: 1350 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 1023 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf