Synthesis of goldene comprising single-atom layer goldShow others and affiliations
2024 (English)In: Nature Synthesis, E-ISSN 2731-0582, Vol. 3, no 6, p. 744-751Article in journal (Refereed) Published
Abstract [en]
The synthesis of monolayer gold has so far been limited to free-standingseveral-atoms-thick layers, or monolayers confned on or inside templates.Here we report the exfoliation of single-atom-thick gold achieved throughwet-chemically etching away Ti3C2 from nanolaminated Ti3AuC2, initiallyformed by substituting Si in Ti3SiC2 with Au. Ti3SiC2 is a renown MAX phase,where M is a transition metal, A is a group A element, and X is C or N. Ourdeveloped synthetic route is by a facile, scalable and hydrofuoric acid-freemethod. The two-dimensional layers are termed goldene. Goldene layerswith roughly 9% lattice contraction compared to bulk gold are observedby electron microscopy. While ab initio molecular dynamics simulationsshow that two-dimensional goldene is inherently stable, experiments showsome curling and agglomeration, which can be mitigated by surfactants.X-ray photoelectron spectroscopy reveals an Au 4f binding energy increaseof 0.88 eV. Prospects for preparing goldene from other non-van der WaalsAu-intercalated phases, including developing etching schemes,are presented.
Place, publisher, year, edition, pages
Nature Publishing Group, 2024. Vol. 3, no 6, p. 744-751
National Category
Condensed Matter Physics
Identifiers
URN: urn:nbn:se:liu:diva-202582DOI: 10.1038/s44160-024-00518-4ISI: 001203366300001Scopus ID: 2-s2.0-85190684420OAI: oai:DiVA.org:liu-202582DiVA, id: diva2:1852159
Note
Funding agencies: the Swedish Research Council project grant nos. 2017-03909 (L.H.), 2023-04107 (L.H.) and 2021-04426 (D.G.S.), Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linköping University grant no. SFO-Mat-LiU 2009 00971, Wallenberg Scholar Program grant no. KAW 2019.0290 (L.H.), the Swedish Research Council through grant agreement nos. VR-2018-05973 and 2022-06725, MIRAI2.0, Åforsk Foundation grant no. 22-4, the Olle Engkvist foundation grant no. 222-0053, Carl Tryggers Stiftelse contract no. CTS 20:150, Swedish Energy Agency (grant no. 43606-1), Carl Tryggers Foundation (grant nos. CTS23:2746, CTS 20:272, CTS16:303, CTS14:310)and Göran Gustafsson Foundation for Research in Natural Sciences and Medicines.
2024-04-172024-04-172025-02-06Bibliographically approved