Open this publication in new window or tab >>2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]
Artificial superlattices with their exceptional properties have been popular in a broad range of applications such as electronic, magnetic, optical, and hard coating. Another potential application for single crystal artificial superlattices is highly efficient interference neutron optics, owing to an ultimate interface width of just ±½ atomic layer. Moreover, studies of superlattices have been instrumental in understanding the hardening mechanisms in transition metal nitrides and carbides while such studies on transition metal diborides are lacking, despite extensive studies on monolithic transition metal diboride thin films.
This thesis describes a logical series of studies solving a range of fundamental issues which enabled epitaxial growth of high quality CrB2/TiB2 (0001) diboride superlattices onto Al2O3 (0001) and 4H-SiC (0001) substrates by direct current magnetron sputter epitaxy. This involved implementation of several different strategies; sputtering from compound diboride targets, co-sputtering from separate metal and compound targets, sputtering from titanium boride (Ti:B = 1:1) and chromium diboride targets, monolayer-control of growth kinetics by Ar-ion assistance, as well as choice of low lattice mismatch substrate. Effects on the structural and interface quality of the superlattices are studied with respect to substrate temperature, B stoichiometry (B/TM ratio), modulation period Λ = DCrB2 + DTiB2, layer thickness ratio Γ = DTiB2/(DCrB2+ DTiB2), ion-assistance energies, use of interfacial protective buffer layers, as well as choice of Al2O3 or 4H-SiC substrates. X-ray diffraction, X-ray reflectivity, Neutron reflectivity, time of flight elastic recoil detection analysis, reciprocal space map, scanning transmission electron microscopy, electron energy loss spectroscopy, selected area electron diffraction, and nano-indentation are used for characterization.
For all experimental conditions, it is found that the highest structural quality of the superlattices are obtained for the layer thickness ratio Γ ≈ 0.3. Using Al2O3 substrates and compound targets, an optimum sputter gas pressure of pAr = 4 mTorr and a substrate temperature of 600 °C, it is found that superlattices with modulation period Λ = 6 nm and Γ in the range of 0.2-0.4 exhibit the highest structural quality. However, B segregation in over-stoichiometric TiBy layers (y > 2), grown from TiB2 compound target, results in narrow epitaxial superlattice columnar growth with structurally distorted B-rich boundaries.
By co-sputtering from Ti and TiB2 targets, y can be tailored in the range 0.9 to 3.3 in TiBy layers through controlling the relative applied target powers. Co-sputtered TiB2.3 single layers exhibit 10x larger epitaxial domains than non-co-sputtered films and high quality close-to-stoichiometric CrB1.7/TiB2.3 superlattices are obtained at a higher growth temperature of 750 °C. The individual CrB1.7 layers grow in a 2D-fashion leading to smooth surfaces and atomically abrupt interfaces when TiB2.3 is grown on top. In contrast, TiB2.3 layers exhibit rough interfaces where CrB1.7 is grown on top which indicate kinetically limited 3D growth of the TiB2.3. The difference in growth mode between CrB1.7 and TiB2.3 is attributed to a 1100 K difference in melting temperatures. Introducing the use of a titanium boride target, close-to-stoichiometric continuous TiB1.8 single layers of high crystal quality are achieved directly, which relaxes any process constraints imposed by the need of balanced fluxes from Ti and TiB2 targets. Moreover, ion-assisted epitaxial growth is implemented by concurrent low energy Ar-ion extracted from the sputtering plasma, to stimulate the mobility of the adatoms, in particular for TiB1.8 which has the highest melting temperature. CrB1.9/TiB1.8 superlattices with single crystal quality and superlattice layer definition exceeding any of the previously obtained superlattices is obtained using TiB target combined with Ar-ion energies of 31 eV and 60 eV for CrB1.9 and TiB1.8, respectively, at a growth temperature of 1173 K. Further enhancement of interface abruptness is obtained by commencing the growth of each individual layer without ion-assistance for one unit cell, forming a buffer layer protecting the just formed interfaces from ion-induced intermixing during the ion-assisted growth of the remaining parts of the layers.
The benefits of using a lattice matched substrate are demonstrated by using 4H-SiC which exhibit only -1.29 % lattice mismatch as compared to -26 % for Al2O3 which is used in the earlier experiments in this work. The SiC allows for growing high quality single crystal superlattices also with thickness ratios Γ = 0.5 and Γ = 0.7. This is attributed to few misfit dislocations generated due to substrate misfit which lead to a strained layer superlattice growth. The superlattices exhibit less structural crystal defects, smoother initial growth, and smaller interface roughness when using SiC substrates.
Abstract [sv]
Konstgjorda supergitter med sina exceptionella egenskaper har varit populära i ett brett spektrum av användningsområden såsom elektroniska, magnetiska, optiska och hårda beläggningar. En annan potentiell tillämpning för enkristallsupergitter är högeffektiv interferensneutronoptik, tack vare att gränssnitten mellan lagren kan vara så tunna som endast ±½ atomlager. Studier av supergitter har även varit avgörande för att förstå härdnings-mekanismerna i övergångsmetall-nitrider och -karbider medan sådana studier på övergångsmetalldiborider saknas, trots omfattande studier av monolitiska tunna filmer.
Denna avhandling beskriver en logisk serie av studier som löser en rad grundläggande problem som möjliggjort epitaxiell tillväxt av högkvalitativa CrB2/TiB2-diboridsupergitter på substrat av enkristallin safir och kiselkarbid genom magnetronsputtring. Detta innebar implementering av flera olika strategier; sputtring från diboridkällor, samsputtring från separata metall- och diboridkällor, sputtring från titanmonoborid- och kromdiboridkällor, kontroll av tillväxt-kinetiken på atomlagernivå genom argonjon-assisterad epitaxi samt val av substrat med liten gittermissanpassning. Effekter på supergittrens kristallstruktur och gränssnittskvalitet studeras med avseende på substrattemperatur, borstökiometri (B/metall-förhållande), modulerings-period Λ = DCrB2 + DTiB2, skikttjockleksförhållande Γ = DTiB2/(DCrB2 + DTiB2), jonassistans-energi, användning av gränssnittsskyddande buffertlager, samt val av safir- eller kiselkarbid-substrat. Röntgendiffraktion, röntgenreflektivitet, neutronreflektivitet, jonstråleanalys, transmissionselektronmikroskopi, elektronenergiförlustspektroskopi, elektron-diffraktion och nanoindentation används för karakterisering.
För alla experimentella förhållanden har det visat sig att den högsta strukturella kvaliteten hos supergittren erhålls för skikttjockleksförhållandet Γ ≈ 0,3. Vid användning av safirsubstrat och sputtring från Cr- och Ti-diboridkällor med ett optimalt sputtergastryck pAr = 4 mTorr och en substrattemperatur på 600 °C, har vi funnit att supergitter med moduleringsperiod Λ = 6 nm och Γ i intervallet 0,2-0,4 uppvisar den högsta strukturella kvaliteten. Emellertid resulterar överstökiometriska TiBy-skikt (y > 2) i segregering av bor som i sin tur leder till tillväxt av supergitter i smala kolumnära epitaxiella domäner med strukturellt förvrängda borrika gränser.
Genom att samsputtra från en Ti- och en TiB2-källa, och välja det rätta effektförhållandet till sputterkällorna, kan y skräddarsys i intervallet 0,9 till 3,3 i TiBy-lagren. Samsputtrade TiB2,3 enkellager uppvisar 10x större epitaxiella domäner än icke-samsamsputtrade filmer, samt ger högkvalitativa, nära stökiometriska, CrB1,7/TiB2,3 supergitter vid en högre tillväxttemperatur på 750 °C. De individuella CrB1.7-skikten växer på ett tvådimensionellt sätt vilket leder till släta ytor och atomärt abrupta gränssnitt när TiB2,3 odlas ovanpå. Däremot uppvisar TiB2,3-skikt ojämna gränssnitt då CrB1,7 odlas ovanpå vilket tyder på en kinetiskt begränsad tredimensionell tillväxtmod av TiB2,3. Skillnaden i tillväxtsätt mellan CrB1,7 och TiB2,3 tillskrivs en 1100 K skillnad i smälttemperaturer. Genom att introducera användningen av en sputterkälla av titanmonoborid uppnås kontinuerliga och nästan stökiometriska TiB1,8-epilager av hög kristallkvalitet, vilket lättar på alla processbegränsningar tack vare behovet av balanserade flöden från Ti- och TiB2-källorna. Samtidigt implementeras jonassisterad epitaxiell tillväxt, genom lågenergetiska Ar-joner som extraheras från sputterplasmat, för att stimulera rörligheten hos adatomerna, särskilt för TiB1,8 som har den högsta smälttemperaturen. De bästa supergittren erhålls genom användningen av en TiB-källa kombinerat med Ar-jonenergier på 31 eV och 60 eV för CrB1,9 respektive TiB1,8, vid en tillväxttemperatur på 1173 K. CrB1,9/TiB1,8 supergitter med enkristallkvalitet och supergitterskiktsdefinition som överstiger något av de tidigare erhållna supergittren. Ytterligare förbättring av gränssnittems abrupthet erhålls genom att påbörja tillväxten av varje enskilt skikt med ett atomlager utan jonassistans, som bildar skyddande buffertskikt på de nyss bildade lagergränsytorna, vilka hindrar joninducerad intermixning av av atomer mellan skikten under den följande jonassisterade tillväxten av återstoden av varje lager.
Fördelarna med att använda ett gitteranpassat substrat påvisas genom att använda kiselkarbid (4H-SiC) som endast uppvisar -1,29 % gittermissanpassning mot supergittren jämfört med -26 % för safir (Al2O3) som använts i de tidigare experimenten i detta arbete. SiC möjliggör odling av högkvalitativa enkristallsupergitter även med tjockleksförhållanden Γ = 0,5 och Γ = 0,7. Detta tillskrivs supergittertillväxt med töjda lager och mindre relaxering av gitterspänningar under kylningen efter tillväxt.
Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2024. p. 68
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 2420
Keywords
Superlattices, Diborides, Stoichiometry, Layer definition, Magnetron sputter epitaxy
National Category
Condensed Matter Physics
Identifiers
urn:nbn:se:liu:diva-209668 (URN)10.3384/9789180758970 (DOI)9789180758963 (ISBN)9789180758970 (ISBN)
Public defence
2024-12-13, Nobel (BL32), B-building, Campus Valla, Linköping, 09:15 (English)
Opponent
Supervisors
Note
Funding: This work is supported by the Swedish National Graduate School in Neutron Scattering (SwedNess) through the grant by the Swedish Foundation for Strategic Research (SSF) GSn15 - 0008, the Swedish Government Strategic Research Area in Materials Science on Advanced Functional Materials (AFM) at Linköping University (Faculty Grant SFO Mat LiU No. 2009 00971), grants from the center in Nanoscience and Technology at LiTH CeNano 2021 and 2022, grants from ÅForsk 2022, Intsam 2022, and Lars Hiertas Minne 2022, scholarships from the Society of Vacuum Coaters Foundation (SVCF) 2023, and the Hans Werthén Foundation, the Royal Swedish Academy of Engineering Sciences (IVA) 2023 (for 4-month research stay in the UK).
2024-11-142024-11-142025-04-02Bibliographically approved