liu.seSearch for publications in DiVA
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Sc3AlN: A New Perovskite
Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska högskolan.
Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska högskolan.
Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska högskolan.
Linköpings universitet, Institutionen för fysik, kemi och biologi, Beräkningsfysik. Linköpings universitet, Tekniska högskolan.
Vise andre og tillknytning
2008 (engelsk)Inngår i: European Journal of Inorganic Chemistry, ISSN 1434-1948, E-ISSN 1099-1948, Vol. 2008, nr 8, s. 1193-1195Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Sc3AlN with perovskite structure has been synthesized as the first ternary phase in the Sc–Al–N system. Magnetron sputter epitaxy at 650 °C was used to grow single-crystal, stoichiometric Sc3AlN(111) thin films onto MgO(111) substrates with ScN(111) seed layers as shown by elastic recoil detection analysis, X-ray diffraction, and transmission electron microscopy. The Sc3AlN phase has a lattice parameter of 4.40 Å, which is in good agreement with the theoretically predicted 4.42 Å. Comparisons of total formation energies show that Sc3AlN is thermodynamically stable with respect to all known binary compounds. Sc3AlN(111) films of 1.75 μm thickness exhibit a nanoindentation hardness of 14.2 GPa, an elastic modulus of 249 GPa, and a roomtemperature electrical resistivity of 41.2 μΩ cm.

sted, utgiver, år, opplag, sider
2008. Vol. 2008, nr 8, s. 1193-1195
Emneord [en]
Crystal growth, Density functional theory, Electron microscopy, Perovskite nitride phases, Thin films
HSV kategori
Identifikatorer
URN: urn:nbn:se:liu:diva-17106DOI: 10.1002/ejic.200701356OAI: oai:DiVA.org:liu-17106DiVA, id: diva2:201943
Tilgjengelig fra: 2009-04-14 Laget: 2009-03-06 Sist oppdatert: 2019-01-28bibliografisk kontrollert
Inngår i avhandling
1. Reactive Magnetron Sputter Deposition and Characterization of Thin Films from the Ti-Al-N and Sc-Al-N Systems
Åpne denne publikasjonen i ny fane eller vindu >>Reactive Magnetron Sputter Deposition and Characterization of Thin Films from the Ti-Al-N and Sc-Al-N Systems
2009 (engelsk)Licentiatavhandling, med artikler (Annet vitenskapelig)
Abstract [en]

This Thesis treats the growth and characterization of ternary transition metal nitride thin films. The aim is to probe deeper into the Ti-Al-N system and to explore the novel Sc-Al-N system. Thin films were epitaxially grown by reactive magnetron sputtering from elemental targets onto single-crystal substrates covered with a seed layer. Elastic recoil detection analysis and Rutherford backscattering spectroscopy were used for compositional analysis and depth profiling. Different x-ray diffraction techniques were employed, ex situ using Cu radiation and in situ during deposition using synchrotron radiation, to identify phases, to obtain information about texture, and to determine the thickness and roughness evolution of layers during and after growth. Transmission electron microscopy was used for overview and lattice imaging, and to obtain lattice structure information by electron diffraction. Film properties were determined using van der Pauw measurements of the electrical resistivity, and nanoindentation for the materials hardness and elastic modulus. The epitaxial Mn+1AXn phase Ti2AlN was synthesized by solid-state reaction during interdiffusion between sequentially deposited layers of (0001)-oriented AlN and Ti thin films. When annealing the sample, N and Al diffused into the Ti, forming Ti3AlN at 400 ºC and Ti2AlN at 500 ºC. The Ti2AlN formation temperature is 175 ºC lower than earlier reported results. Ti4AlN3 thin films were, however, not possible to synthesize when depositing films with a Ti:Al:N ratios of 4:1:3. Substrate temperatures at 600 ºC yielded an irregularly stacked Tin+1AlNn layered structure because of the low mobility of Al adatoms. An increased temperature led, however, to an Al deficiency due to an out diffusion of Al atoms, and formation of Ti2AlN phase and Ti1-xAlxN cubic solid solution. In the Sc-Al-N system the first ternary phase was discovered, namely the perovskite Sc3AlN, with a unit cell of 4.40 Å. Its existence was supported by ab initio calculations of the enthalpy showing that Sc3AlN is thermodynamically stable with respect to the binaries. Sc3AlN thin films were experimentally found to have a hardness of 14.2 GPa, an elastic modulus of 21 GPa, and a room temperature resistivity of 41.2 μΩcm.

sted, utgiver, år, opplag, sider
Linköping: Linköping University Electronic Press, 2009. s. 42
Serie
Linköping Studies in Science and Technology. Thesis, ISSN 0280-7971 ; 1344
HSV kategori
Identifikatorer
urn:nbn:se:liu:diva-17683 (URN)LIU-TEK-LIC-2008:2 (Lokal ID)978-91-7393-996-6 (ISBN)LIU-TEK-LIC-2008:2 (Arkivnummer)LIU-TEK-LIC-2008:2 (OAI)
Presentation
2008-02-14, 00:00 (engelsk)
Veileder
Tilgjengelig fra: 2009-04-14 Laget: 2009-04-14 Sist oppdatert: 2016-08-31bibliografisk kontrollert
2. Growth and Phase Stability Studies of Epitaxial Sc-Al-N and Ti-Al-N Thin Films
Åpne denne publikasjonen i ny fane eller vindu >>Growth and Phase Stability Studies of Epitaxial Sc-Al-N and Ti-Al-N Thin Films
2010 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

¨This Thesis treats the growth and characterization of ternary transition metal nitride thin films. The aim is to probe deep into the Ti-Al-N system and to explore novel Sc-Al-N compounds. Thin films were epitaxially grown by reactive dual magnetron sputtering from elemental targets onto single-crystal substrates. Ion beam analyses were used for compositional analysis and depth profiling. Different X-ray diffraction techniques were employed, ex situ using Cu radiation and in situ during deposition using synchrotron radiation, to achieve information about phases, texture, and thickness of films, and to follow roughness evolution of layers during and after growth. Transmission electron microscopy was used for overview and lattice imaging, and to obtain lattice structure information by electron diffraction.

In the Sc-Al-N system, the perovskite Sc3AlN was for the first time synthesized as a thin film and in single phase, with a unit cell of 4.40 Å. The hardness was found to be 14.2 GPa, the elastic modulus 21 GPa, and the room temperature resistivity 41.2 μΩcm. Cubic solid solutions of Sc1-xAlxN can be synthesized with AlN molar fraction up to ~60%. Higher AlN contents yield three different epitaxial relations to ScN(111), namely, #1 Sc1-xAlxN(0001) || ScN(111) with Sc1-xAlxN[11210] || ScN[110], #2 Sc1-xAlxN(1011) || ScN(110) with Sc1-xAlxN[1210] || ScN[110], and #3 Sc1-xAlxN(1011) || ScN(113). An in situ deposition and annealing study of cubic Sc0.57Al0.43N films showed volume induced phase separation into ScN and wurtzite structure AlN, via nucleation and growth at the domain boundaries. The first indications for phase separation are visible at 1000 °C, and the topotaxial relationship between the binaries after phase separation is AlN(0001) || ScN(001) and AlN<01ɸ10> || ScN <1ɸ10>. This is compared with Ti1-xAlxN, for which an electronic structure driving force leads to spinodal decomposition into isostructural TiN and AlN already at 800 °C. First principles calculations explain the results on a fundamental physics level. Up to ~22% ScN can under the employed deposition conditions be dissolved into wurtzite Sc1-xAlxN films, while retaining a single-crystal structure and with lattice parameters matching calculated values.

In the Ti-Al-N system, the Ti2AlN phase was synthesized epitaxially by solid state reaction during interdiffusion between sequentially deposited layers of AlN(0001) and Ti(0001). When annealing the sample, N and Al diffused into the Ti layer, forming Ti3AlN(111) at 400 ºC and Ti2AlN(0001) at 500 ºC. The Ti2AlN formation temperature is 175 ºC lower than earlier reported results. Another way of forming Ti2AlN phase is by depositing understoichiometric TiNx at 800 °C onto Al2O3(0001). An epitaxial Ti2Al(O,N) (0001) oxynitride forms close to the interface between film and substrate through a solid state reaction. Ti4AlN3 was, however, not possible to synthesize when depositing films with a Ti:Al:N ratio of 4:1:3 due to competing reactions. A substrate temperature of 600 ºC yielded an irregularly stacked Tin+1AlNn layered structure because of the low mobility of Al ad-atoms. An increased temperature led to Al deficiency due to outdiffusion of Al atoms, and formation of the Ti2AlN phase and a Ti1-xAlxN cubic solid solution.

sted, utgiver, år, opplag, sider
Linköping: Linköping University Electronic Press, 2010. s. 98
Serie
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1314
HSV kategori
Identifikatorer
urn:nbn:se:liu:diva-56274 (URN)978-91-7393-391-9 (ISBN)
Disputas
2010-05-28, Visionen, Hus B, ingång 27, Campus Valla, Linköpings universitet, Linköping, 09:15 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2010-05-06 Laget: 2010-05-06 Sist oppdatert: 2016-08-31bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstLink to Licentiate Thesis

Personposter BETA

Höglund, CarinaBirch, JensBeckers, ManfredAlling, BjörnHultman, Lars

Søk i DiVA

Av forfatter/redaktør
Höglund, CarinaBirch, JensBeckers, ManfredAlling, BjörnHultman, Lars
Av organisasjonen
I samme tidsskrift
European Journal of Inorganic Chemistry

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 472 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf