liu.seSök publikationer i DiVA
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A Neural Network Based Brain-Computer Interface for Classification of Movement Related EEG
Linköpings universitet, Institutionen för konstruktions- och produktionsteknik.
2003 (Engelska)Självständigt arbete på avancerad nivå (magisterexamen), 20 poäng / 30 hpStudentuppsats
Abstract [en]

A brain-computer interface, BCI, is a technical system that allows a person to control the external world without relying on muscle activity. This thesis presents an EEG based BCI designed for automatic classification of two dimensional hand movements. The long-term goal of the project is to build an intuitive communication system for operation by people with severe motor impairments. If successful, such system could for example be used by a paralyzed patient to control a word processor or a wheelchair.

The developed BCI was tested in an offine pilot study. In response to an external cue, a test subject moved a joystick in one of four directions. During the movement, EEG was recorded from seven electrodes mounted on the subject's scalp. An autoregressive model was fitted to the data, and the extracted coefficients were used as input features to a neural network based classifier. The classifier was trained to recognize the direction of the movements. During the first half of the experiment, real physical movements were performed. In the second half, subjects were instructed just to imagine the hand moving the joystick, but to avoid any muscle activity.

The results of the experiment indicate that the EEG signals do in fact contain extractable and classifiable information about the performed movements, during both physical and imagined movements.

Ort, förlag, år, upplaga, sidor
Institutionen för konstruktions- och produktionsteknik , 2003. , s. 136
Nyckelord [en]
Brain-Computer Interface, Neural Networks, EEG, Autoregressive modeling
Nationell ämneskategori
Medicinsk laboratorie- och mätteknik
Identifikatorer
URN: urn:nbn:se:liu:diva-6481ISRN: LITH-IKP-EX--03/2107--SEOAI: oai:DiVA.org:liu-6481DiVA, id: diva2:21837
Ämne / kurs
Fysik
Presentation
2003-12-16, Röda rummet, A-huset, Linköpings Universitet, Campus Valla, Linköping, 10:00
Uppsök
teknik
Handledare
Examinatorer
Tillgänglig från: 2006-06-08 Skapad: 2006-06-08 Senast uppdaterad: 2012-01-05Bibliografiskt granskad

Open Access i DiVA

fulltext(4367 kB)8513 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 4367 kBChecksumma MD5
302d543edc5ddeadc68d983c513ec5b5e55c9931f8f57628a2f02d7bb446b215536c006c
Typ fulltextMimetyp application/pdf

Av organisationen
Institutionen för konstruktions- och produktionsteknik
Medicinsk laboratorie- och mätteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 8513 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 1374 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf