liu.seSök publikationer i DiVA
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Canonical correlation analysis for data reduction in data mining applied to predictive models for breast cancer recurrence
Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för medicinsk teknik, Medicinsk informatik.
Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för medicinsk teknik, Medicinsk informatik.
Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för medicinsk teknik, Medicinsk informatik.
Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för medicinsk teknik, Medicinsk informatik.
2005 (Engelska)Ingår i: The XIXth International Congress of the European Federation for Medical Informatics,2005, Amsterdam: IOSPress , 2005, s. 175-180Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Data mining methods can be used for extracting specific medical knowledge such as important predictors for recurrence of breast cancer in pertinent data material. However, when there is a huge quantity of variables in the data material it is first necessary to identify and select important variables. In this study we present a preprocessing method for selecting important variables in a dataset prior to building a predictive model. In the dataset, data from 5787 female patients were, analysed. To cover more predictors and obtain a better assessment of the outcomes, data were retrieved from three different registers: the regional breast cancer, tumour markers, and cause of death registers. After retrieving information about selected predictors and outcomes from the different registers, the raw data were cleaned by running different logical rules. Thereafter, domain experts selected predictors assumed to be important regarding recurrence of breast cancer. After that, Canonical Correlation Analysis (CCA) was applied as a dimension reduction technique to preserve the character of the original data. Artificial Neural Network (ANN) was applied to the resulting dataset for two different analyses with the same settings. Performance of the predictive models was confirmed by ten-fold cross validation. The results showed an increase in the accuracy of the prediction and reduction of the mean absolute error.

Ort, förlag, år, upplaga, sidor
Amsterdam: IOSPress , 2005. s. 175-180
Nationell ämneskategori
Medicin och hälsovetenskap
Identifikatorer
URN: urn:nbn:se:liu:diva-29180ISI: 000273025900029Lokalt ID: 14453OAI: oai:DiVA.org:liu-29180DiVA, id: diva2:249992
Tillgänglig från: 2009-10-09 Skapad: 2009-10-09 Senast uppdaterad: 2010-08-11

Open Access i DiVA

Fulltext saknas i DiVA

Person

Razavi, Amir RezaGill, HansÅhlfeldt, HansShahsavar, Nosrat

Sök vidare i DiVA

Av författaren/redaktören
Razavi, Amir RezaGill, HansÅhlfeldt, HansShahsavar, Nosrat
Av organisationen
Tekniska högskolanMedicinsk informatik
Medicin och hälsovetenskap

Sök vidare utanför DiVA

GoogleGoogle Scholar

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 504 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf