liu.seSök publikationer i DiVA
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Quantification of intravoxel velocity standard deviation and turbulence intensity by generalizing phase-contrast MRI
Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV. Linköpings universitet, Institutionen för medicin och hälsa, Klinisk fysiologi. Linköpings universitet, Hälsouniversitetet. Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Mekanisk värmeteori och strömningslära. Linköpings universitet, Tekniska högskolan.
Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV. Linköpings universitet, Institutionen för medicin och hälsa, Klinisk fysiologi. Linköpings universitet, Institutionen för medicinsk teknik, Medicinsk informatik. Linköpings universitet, Tekniska högskolan.
Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV. Linköpings universitet, Institutionen för medicin och hälsa, Klinisk fysiologi. Linköpings universitet, Hälsouniversitetet. Östergötlands Läns Landsting, Hjärtcentrum, Thorax-kärlkliniken.
Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV. Linköpings universitet, Institutionen för medicin och hälsa, Klinisk fysiologi. Linköpings universitet, Hälsouniversitetet. Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Mekanisk värmeteori och strömningslära. Linköpings universitet, Tekniska högskolan.ORCID-id: 0000-0003-1395-8296
2006 (Engelska)Ingår i: Magnetic Resonance in Medicine, ISSN 0740-3194, E-ISSN 1522-2594, Vol. 56, nr 4, s. 850-858Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Turbulent flow, characterized by velocity fluctuations, is a contributing factor to the pathogenesis of several cardiovascular diseases. A clinical noninvasive tool for assessing turbulence is lacking, however. It is well known that the occurrence of multiple spin velocities within a voxel during the influence of a magnetic gradient moment causes signal loss in phase-contrast magnetic resonance imaging (PC-MRI). In this paper a mathematical derivation of an expression for computing the standard deviation (SD) of the blood flow velocity distribution within a voxel is presented. The SD is obtained from the magnitude of PC-MRI signals acquired with different first gradient moments. By exploiting the relation between the SD and turbulence intensity (TI), this method allows for quantitative studies of turbulence. For validation, the TI in an in vitro flow phantom was quantified, and the results compared favorably with previously published laser Doppler anemometry (LDA) results. This method has the potential to become an important tool for the noninvasive assessment of turbulence in the arterial tree.

Ort, förlag, år, upplaga, sidor
2006. Vol. 56, nr 4, s. 850-858
Nyckelord [en]
phase-contrast magnetic resonance imaging, turbulent flow, intravoxel velocity distribution, turbulence intensity, atherosclerosis
Nationell ämneskategori
Medicin och hälsovetenskap Fysiologi Strömningsmekanik och akustik Medicinsk laboratorie- och mätteknik
Identifikatorer
URN: urn:nbn:se:liu:diva-37249DOI: 10.1002/mrm.21022ISI: 000240897000017Lokalt ID: 34073OAI: oai:DiVA.org:liu-37249DiVA, id: diva2:258098
Tillgänglig från: 2009-10-10 Skapad: 2009-10-10 Senast uppdaterad: 2018-01-13
Ingår i avhandling
1. Extending MRI to the Quantification of Turbulence Intensity
Öppna denna publikation i ny flik eller fönster >>Extending MRI to the Quantification of Turbulence Intensity
2010 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

In cardiovascular medicine, the assessment of blood flow is fundamental to the understanding and detection of disease. Many pharmaceutical, interventional, and surgical treatments impact the flow. The primary purpose of the cardiovascular system is to drive, control and maintain blood flow to all parts of the body. In the normal cardiovascular system, fluid transport is maintained at high efficiency and the blood flow is essentially laminar. Disturbed and turbulent blood flow, on the other hand, appears to be present in many cardiovascular diseases and may contribute to their initiation and progression. Despite strong indications of an important interrelationship between flow and cardiovascular disease, medical imaging has lacked a non-invasive tool for the in vivo assessment of disturbed and turbulent flow. As a result, the extent and role of turbulence in the blood flow of humans have not yet been fully investigated.

Magnetic resonance imaging (MRI) is a versatile tool for the non-invasive assessment of flow and has several important clinical and research applications, but might not yet have reached its full potential. Conventional MRI techniques for the assessment of flow are based on measurements of the mean velocity within an image voxel. The mean velocity corresponds to the first raw moment of the distribution of velocities within a voxel. An MRI framework for the quantification of any moment (mean, standard deviation, skew, etc.) of arbitrary velocity distributions is presented in this thesis.

Disturbed and turbulent flows are characterized by velocity fluctuations that are superimposed on the mean velocity. The intensity of these velocity fluctuations can be quantified by their standard deviation, which is a commonly used measure of turbulence intensity. This thesis focuses on the development of a novel MRI method for the quantification of turbulence intensity. This method is mathematically derived and experimentally validated. Limitations and sources of error are investigated and guidelines for adequate application of MRI measurements of turbulence intensity are outlined. Furthermore, the method is adapted to the quantification of turbulence intensity in the pulsatile blood flow of humans and applied to a wide range of cardiovascular diseases. In these applications, elevated turbulence intensity was consistently detected in regions where highly disturbed flow was anticipated, and the effects of potential sources of errors were small.

Diseased heart valves are often replaced with prosthetic heart valves, which, in spite of improved benefits and durability, continue to fall short of matching native flow patterns. In an in vitro setting, MRI was used to visualize and quantify turbulence intensity in the flow downstream from four common designs of prosthetic heart valves. Marked differences in the extent and degree of turbulence intensity were detected between the different valves.

Mitral valve regurgitation is a common valve lesion associated with progressive left atrial and left ventricular remodelling, which may often require surgical correction to avoid irreversible ventricular dysfunction. The spatiotemporal dynamics of flow disturbances in mitral regurgitation were assessed based on measurements of flow patterns and turbulence intensity in a group of patients with significant regurgitation arising from similar valve lesions. Peak turbulence intensity occurred at the same time in all patients and the total turbulence intensity in the left atrium appeared closely related to the severity of regurgitation.

MRI quantification of turbulence intensity has the potential to become a valuable tool in investigating the extent, timing and role of disturbed blood flow in the human cardiovascular system, as well as in the assessment of the effects of different therapeutic options in patients with vascular or valvular disorders.

Ort, förlag, år, upplaga, sidor
Linköping: Linköping University Electronic Press, 2010. s. 73
Serie
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1297
Nyckelord
Turbulence intensity, cardiovascular disease, blood flow, hemodynamics, magnetic resonance imaging, generalized phase-contrast MRI, turbulent flow
Nationell ämneskategori
Biomedicinsk laboratorievetenskap/teknologi Strömningsmekanik och akustik
Identifikatorer
urn:nbn:se:liu:diva-52561 (URN)978-91-7393-453-4 (ISBN)
Disputation
2010-02-12, Elsa-Brändströmsalen, Universitetssjukhuset, Campus US. Linköpings universitet, Linköping, 09:15 (Engelska)
Opponent
Handledare
Tillgänglig från: 2010-01-19 Skapad: 2010-01-04 Senast uppdaterad: 2020-02-19Bibliografiskt granskad

Open Access i DiVA

fulltext(1948 kB)1164 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 1948 kBChecksumma SHA-512
65e3c6e8d7b75421b9f880524804c9de1ccb25e5ec6f3296f4df327af10d752df9923108d7659b139a9df1bf5df9b95c518703ffb014e85a32a4946f8154650c
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltext

Person

Dyverfeldt, PetterSigfridsson, AndreasEscobar Kvitting, John-PederEbbers, Tino

Sök vidare i DiVA

Av författaren/redaktören
Dyverfeldt, PetterSigfridsson, AndreasEscobar Kvitting, John-PederEbbers, Tino
Av organisationen
Centrum för medicinsk bildvetenskap och visualisering, CMIVKlinisk fysiologiHälsouniversitetetMekanisk värmeteori och strömningsläraTekniska högskolanMedicinsk informatikThorax-kärlkliniken
I samma tidskrift
Magnetic Resonance in Medicine
Medicin och hälsovetenskapFysiologiStrömningsmekanik och akustikMedicinsk laboratorie- och mätteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 1165 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 1007 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf