liu.seSearch for publications in DiVA
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Utilizing Model Structure for Efficient Simultaneous Localization and Mapping for a UAV Application
Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska högskolan.
Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska högskolan.
Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska högskolan.
Linköpings universitet, Institutionen för datavetenskap, Artificiell intelligens och integrerad datorsystem. Linköpings universitet, Tekniska högskolan.
Vise andre og tillknytning
2008 (engelsk)Inngår i: Proceedings of Reglermöte 2008, 2008, s. 313-322Konferansepaper, Publicerat paper (Annet vitenskapelig)
Abstract [en]

This contribution aims at unifying two recent trends in applied particle filtering (PF). The first trend is the major impact in simultaneous localization and mapping (SLAM) applications, utilizing the FastSLAM algorithm. Thesecond one is the implications of the marginalized particle filter (MPF) or the Rao-Blackwellized particle filter (RBPF) in positioning and tracking applications. Using the standard FastSLAM algorithm, only low-dimensional vehicle modelsare computationally feasible. In this work, an algorithm is introduced which merges FastSLAM and MPF, and the result is an algorithm for SLAM applications, where state vectors of higher dimensions can be used. Results using experimental data from a UAV (helicopter) are presented. The algorithmfuses measurements from on-board inertial sensors (accelerometer and gyro) and vision in order to solve the SLAM problem, i.e., enable navigation over a long period of time.

sted, utgiver, år, opplag, sider
2008. s. 313-322
Emneord [en]
Rao-Blackwellized/marginalized particle filter, Sensor fusion, Simultaneous localization and mapping, Inertial sensors, UAV, Vision
HSV kategori
Identifikatorer
URN: urn:nbn:se:liu:diva-43508Lokal ID: 73995OAI: oai:DiVA.org:liu-43508DiVA, id: diva2:264367
Konferanse
Reglermöte 2008, Luleå, Sweden June, 2008
Tilgjengelig fra: 2009-10-10 Laget: 2009-10-10 Sist oppdatert: 2013-02-23bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Related report

Personposter BETA

Karlsson, RickardSchön, ThomasTörnqvist, DavidConte, GianpaoloGustafsson, Fredrik

Søk i DiVA

Av forfatter/redaktør
Karlsson, RickardSchön, ThomasTörnqvist, DavidConte, GianpaoloGustafsson, Fredrik
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric

urn-nbn
Totalt: 306 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf