liu.seSearch for publications in DiVA
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Utilizing Model Structure for Efficient Simultaneous Localization and Mapping for a UAV Application
Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska högskolan.
Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska högskolan.
Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska högskolan.
Linköpings universitet, Institutionen för datavetenskap, Artificiell intelligens och integrerad datorsystem. Linköpings universitet, Tekniska högskolan.
Vise andre og tillknytning
2008 (engelsk)Inngår i: Proceedings of the 2008 IEEE Aerospace Conference, 2008, s. 1-10Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

This contribution aims at unifying two recent trends in applied particle filtering (PF). The first trend is the major impact in simultaneous localization and mapping (SLAM) applications, utilizing the FastSLAM algorithm. The second one is the implications of the marginalized particle filter (MPF) or the Rao-Blackwellized particle filter (RBPF) in positioning and tracking applications. Using the standard FastSLAM algorithm, only low-dimensional vehicle models are computationally feasible. In this work, an algorithm is introduced which merges FastSLAM and MPF, and the result is an algorithm for SLAM applications, where state vectors of higher dimensions can be used. Results using experimental data from a UAV (helicopter) are presented. The algorithm fuses measurements from on-board inertial sensors (accelerometer and gyro) and vision in order to solve the SLAM problem, i.e., enable navigation over a long period of time.

sted, utgiver, år, opplag, sider
2008. s. 1-10
Emneord [en]
Rao-Blackwellized/marginalized particle filter, Sensor fusion, Simultaneous localization and mapping, Inertial sensors, UAV, Vision
HSV kategori
Identifikatorer
URN: urn:nbn:se:liu:diva-44274DOI: 10.1109/AERO.2008.4526442Lokal ID: 76152ISBN: 978-1-4244-1487-1 (tryckt)ISBN: 978-1-4244-1488-8 (tryckt)OAI: oai:DiVA.org:liu-44274DiVA, id: diva2:265136
Konferanse
2008 IEEE Aerospace Conference, Big Sky, MT, USA, March, 2008
Tilgjengelig fra: 2009-10-10 Laget: 2009-10-10 Sist oppdatert: 2013-02-23

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstRelated report

Personposter BETA

Karlsson, RickardSchön, ThomasTörnqvist, DavidConte, GianpaoloGustafsson, Fredrik

Søk i DiVA

Av forfatter/redaktør
Karlsson, RickardSchön, ThomasTörnqvist, DavidConte, GianpaoloGustafsson, Fredrik
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 299 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf