liu.seSearch for publications in DiVA
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Optimisation of merged district - heating systems - Benefits of co - operaion in the light of externality costs
Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Energisystem.
2002 (engelsk)Inngår i: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 73, nr 3-4, s. 223-235Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Studies have shown that separate actors can benefit from co-operation around heat supply. Such co-operation, for example, might be between an industry selling waste heat to a districtheating system or two district-heating systems interconnecting their respective systems. Cooperation could also be expected to reduce the environmental impacts of the energy systems by choosing the plants with the lowest emissions. It is widely accepted that the production of heat and electricity causes damage to the environment. This damage often imposes a cost on society, but not on company responsible. In general, using a broader system perspective when analysing local energy systems results in a lower total cost, more e.cient use of plants and a greater potential for producing electricity in combined heat-and-power (CHP) plants. Internalising the externality costs in the energy system model facilitates the study of what cooperation can mean for reducing emissions. This study shows that co-operation between the two systems is on the whole cost-effective, but the benefits are greater when external costs are not included in the calculation. Considering externality costs in combination with current electricity prices would lead to a higher system cost, but the quantity of emission gases will be lower. If, on the other hand, the calculation is made taking externality costs and corresponding adjusted electricity prices (the adjustment being necessary to compensate for the additional cost due to externality costs) into consideration, the quantities of emission gases will rise because more heat-and-power will be generated by one of the CHP plants. © 2002 Elsevier Science Ltd. All rights reserved.

sted, utgiver, år, opplag, sider
2002. Vol. 73, nr 3-4, s. 223-235
HSV kategori
Identifikatorer
URN: urn:nbn:se:liu:diva-46865DOI: 10.1016/S0306-2619(02)00116-2OAI: oai:DiVA.org:liu-46865DiVA, id: diva2:267761
Tilgjengelig fra: 2009-10-11 Laget: 2009-10-11 Sist oppdatert: 2017-12-13

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Personposter BETA

Gebremedhin, Alemayehu

Søk i DiVA

Av forfatter/redaktør
Gebremedhin, Alemayehu
Av organisasjonen
I samme tidsskrift
Applied Energy

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 55 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf