liu.seSearch for publications in DiVA
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Energetic particles in magnetic confinement systems: Synergies beyond fusion
UKAEA Fusion, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB, United Kingdom.
UKAEA Fusion, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB, United Kingdom.
Linköpings universitet, Institutionen för teknik och naturvetenskap, Visuell informationsteknologi och applikationer. Linköpings universitet, Tekniska högskolan.ORCID-id: 0000-0003-4055-0552
Department of Physics, University of York, Heslington YO10 5DD, United Kingdom.
2002 (engelsk)Konferansepaper, Publicerat paper (Annet vitenskapelig)
Abstract [en]

Magnetic confinement fusion science leads many other branches of plasma physics in its capacity to predict, interpret and understand the behaviour of energetic particle populations. The range of applications of this capability should be extended, for the mutual benefit of fusion research and of other branches of science. In this paper we review progress in applying fusion-derived techniques to one of the central questions of astrophysics: the origin of the cosmic ray population that is magnetically confined within our Galaxy. While it is widely believed that supernova remnant shocks provide the main acceleration sites for cosmic ray electrons and protons, the fundamental 'injection' problem remains. Namely, how particles are initially accelerated from ambient thermal to mildly relativistic energies, beyond which Fermi-type processes take over. The cosmic ray injection environment is magnetized and has many other physical resemblances to beam-heated and deuterium-tritium tokamak plasmas, in consequence, many of the same physical processes come into play. These include, for example, collective beam-plasma instability, resonant wave-particle coupling, and the stochasticization of particle orbits. A broad range of analytical and numerical techniques familiar in the fusion context has been successfully applied to the injection problem (see, for example, Dieckmann M.E. et al 2000 Astron. Astrophys. 356 377). Ideas from magnetic fusion have also been used to help design and interpret recent magnetized plasma experiments (Woolsey N.C. et al 2001 Phys. Plasmas 8 2439) using the high-power VULCAN laser, which address the cosmic ray injection problem from a new perspective.

sted, utgiver, år, opplag, sider
2002. Vol. 42, nr 8, s. 986-998
HSV kategori
Identifikatorer
URN: urn:nbn:se:liu:diva-46934DOI: 10.1088/0029-5515/42/8/307OAI: oai:DiVA.org:liu-46934DiVA, id: diva2:267830
Tilgjengelig fra: 2009-10-11 Laget: 2009-10-11 Sist oppdatert: 2017-11-03

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Personposter BETA

Dieckmann, Mark E

Søk i DiVA

Av forfatter/redaktør
Dieckmann, Mark E
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 123 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf