liu.seSearch for publications in DiVA
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Solving quadratically constrained least squares problems using a differential-geometric approach
Linköpings universitet, Tekniska högskolan. Linköpings universitet, Matematiska institutionen, Beräkningsvetenskap.ORCID-id: 0000-0003-2281-856X
2002 (engelsk)Inngår i: BIT Numerical Mathematics, ISSN 0006-3835, E-ISSN 1572-9125, Vol. 42, nr 2, s. 323-335Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

A quadratically constrained linea least squares problem is usually solved using a Lagrange multiplier for the constraint and then solving iteratively a nonlinear secular equation for the optimal Lagrange multiplier. It is well-known that, due to the closeness to a pole for the secular equation, standard methods for solving the secular equation can be slow, and sometimes it is not easy to select a good starting value for the iteration. The problem can be reformulated as that of minimizing the residual of the least squares problem on the unit sphere. Using a differential-geometric approach we formulate Newton's method on the sphere, and thereby avoid the difficulties associated with the Lagrange multiplier formulation. This Newton method on the sphere can be implemented efficiently, and since it is easy to find a good starting value for the iteration, and the convergence is often quite fast, it has a clear advantage over the Lagrange multiplier method. A numerical example is given.

sted, utgiver, år, opplag, sider
2002. Vol. 42, nr 2, s. 323-335
Emneord [en]
ill-conditioned, Lagrange multiplier, least squares, Newton's method, quadratic constraint, Stiefel manifold
HSV kategori
Identifikatorer
URN: urn:nbn:se:liu:diva-48903OAI: oai:DiVA.org:liu-48903DiVA, id: diva2:269799
Tilgjengelig fra: 2009-10-11 Laget: 2009-10-11 Sist oppdatert: 2017-12-12

Open Access i DiVA

Fulltekst mangler i DiVA

Personposter BETA

Elden, Lars

Søk i DiVA

Av forfatter/redaktør
Elden, Lars
Av organisasjonen
I samme tidsskrift
BIT Numerical Mathematics

Søk utenfor DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric

urn-nbn
Totalt: 451 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf