liu.seSearch for publications in DiVA

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt860",{id:"formSmash:upper:j_idt860",widgetVar:"widget_formSmash_upper_j_idt860",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt861_j_idt864",{id:"formSmash:upper:j_idt861:j_idt864",widgetVar:"widget_formSmash_upper_j_idt861_j_idt864",target:"formSmash:upper:j_idt861:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Numerical Solution of a Cauchy Problem for a Parabolic Equation in Two or more Space Dimensions by the Arnoldi MethodPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
2010 (English)Report (Other academic)
##### Abstract [en]

##### Place, publisher, year, edition, pages

Linköping: Linköping University Electronic Press , 2010. , p. 23
##### Series

LiTH-MAT-R, ISSN 0348-2960 ; 2010:4
##### Keywords [en]

Cauchy problem, inverse problem, ill-posed, iterative method, Arnoldi method, Schur decomposition, parabolic PDE
##### National Category

Mathematics
##### Identifiers

URN: urn:nbn:se:liu:diva-54299OAI: oai:DiVA.org:liu-54299DiVA, id: diva2:302604
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt1166",{id:"formSmash:j_idt1166",widgetVar:"widget_formSmash_j_idt1166",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt1172",{id:"formSmash:j_idt1172",widgetVar:"widget_formSmash_j_idt1172",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt1178",{id:"formSmash:j_idt1178",widgetVar:"widget_formSmash_j_idt1178",multiple:true}); Available from: 2010-03-08 Created: 2010-03-08 Last updated: 2011-03-09Bibliographically approved
##### In thesis

We consider the numerical solution of a Cauchy problem for a parabolic equation in multi-dimensional space with cylindrical domain in one spatial space direction. It is desired to find the lower boundary values from the Cauchy data on the upper boundary. This problem is severely ill-posed. The formal solution is written as a hyperbolic cosine function in terms of a multidimensional parabolic (unbounded) operator. We compute an approximate solution by projecting onto a smaller subspace generated via the Arnoldi algorithm applied on the discretized inverse of the operator. Further we regularize the projected problem. The hyperbolic cosine is evaluated explicitly on a low-dimensional subspace. In each iteration step of the Arnoldi method a well-posed parabolic problem is solved. Numerical examples are given to illustrate the performance of the method.

1. Numerical Solution of Ill-posed Cauchy Problems for Parabolic Equations$(function(){PrimeFaces.cw("OverlayPanel","overlay302609",{id:"formSmash:j_idt1464:0:j_idt1468",widgetVar:"overlay302609",target:"formSmash:j_idt1464:0:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1926",{id:"formSmash:j_idt1926",widgetVar:"widget_formSmash_j_idt1926",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1982",{id:"formSmash:lower:j_idt1982",widgetVar:"widget_formSmash_lower_j_idt1982",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1983_j_idt1985",{id:"formSmash:lower:j_idt1983:j_idt1985",widgetVar:"widget_formSmash_lower_j_idt1983_j_idt1985",target:"formSmash:lower:j_idt1983:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});