liu.seSök publikationer i DiVA
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
In situ study of surface exploration by barnacle cyprids (Semibalanus balanoides) using imaging surface plasmon resonance
1School of Marine Science and Technology, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK..
Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensorvetenskap och Molekylfysik. Linköpings universitet, Tekniska högskolan.
Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensorvetenskap och Molekylfysik. Linköpings universitet, Tekniska högskolan.
Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensorvetenskap och Molekylfysik. Linköpings universitet, Tekniska högskolan.
Visa övriga samt affilieringar
(Engelska)Manuskript (preprint) (Övrigt vetenskapligt)
Abstract [en]

Imaging surface plasmon resonance (iSPR) was employed to investigate the interfacial adhesion phenomena that occur during the exploration of immersed surfaces by barnacle cyprids (Semibalanus balanoides). It was hypothesised that since the footprint material used by cyprids for temporary adhesion has previously been related to a large cuticular glycoprotein (SIPC), the passive deposition of cyprid footprints and the binding of SIPC to surfaces might correlate. Increased surface exploration (and footprint deposition) has also been related to increased likelihood of settlement in barnacle cyprids. If a correlation between footprint deposition and SIPC binding were to exist, therefore, there would be potential for the development of a high‐throughput assay to determine the efficacy of putative antifouling chemistries against cyprids prior to, or instead of, lengthy bio‐assays. Footprints were deposited in large numbers on carboxyl‐terminated self‐assembled monolayers (SAMs) and in very small numbers on ethylene glycol‐containing SAMs and hydrogel coatings. SIPC binding also followed the same trend. An exception to the correlation was an amineterminated SAM that accumulated few cyprid footprints, but bound SIPC strongly. It is concluded that there is great potential for the iSPR technique to be used in the evaluation of putatively non‐fouling surfaces as well as improving our understanding of the nature of the cyprid footprint material and its interactions with surfaces of different chemistry. However, the use of SIPC binding as a predictor of footprint accumulation/likelihood of settlement of cyprids to surfaces would be premature at this stage without first understanding the exceptions highlighted in this study.

Nationell ämneskategori
Naturvetenskap
Identifikatorer
URN: urn:nbn:se:liu:diva-54303OAI: oai:DiVA.org:liu-54303DiVA, id: diva2:302620
Tillgänglig från: 2010-03-08 Skapad: 2010-03-08 Senast uppdaterad: 2010-03-08
Ingår i avhandling
1. Hydrogel coatings for biomedical and biofouling applications
Öppna denna publikation i ny flik eller fönster >>Hydrogel coatings for biomedical and biofouling applications
2010 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Many applications share a substantial and yet unmet need for prediction and control of interactions between surfaces and proteins or living cells. Examples are blood-contacting biomaterials, biosensors, and non-toxic anti-biofouling coatings for ship hulls. The main focus of this thesis work has been the synthesis, characterization and properties of a group of coatings, designed for such applications. Many types of substrates, particularly plastics, were coated directly with ultrathin, hydrophilic polymer coatings, using a newly developed polymerization method initiated by short-wavelength ultraviolet light.

The thesis contains eight papers and an introduction aimed to provide a context for the research work. The common theme, discussed and analyzed throughout the work, has been the minimization of non-specific binding of proteins to surfaces, thereby limiting the risk of uncontrolled attachment of cells and higher organisms. This has mainly been accomplished through the incorporation of monomer units bearing poly(ethylene glycol) (PEG) side chains in the coatings. Such PEG-containing “protein resistant” coatings have been used in this work as matrices for biosensor applications, as blood-contacting inert surfaces and as antibiofouling coatings for marine applications, with excellent results. The properties of the coatings, and their interactions with proteins and cells, have been thoroughly characterized using an array of techniques such as infrared spectroscopy, ellipsometry, atomic force microscopy, surface plasmon resonance and neutron reflectometry. In addition, other routes to fabricate coatings with high protein resistance have also been utilized. For instance, the versatility of the fabrication method has enabled the design of gradients with varying electrostatic charge, affecting the protein adsorption and leading to protein resistance in areas where the charges are balanced.

This thesis also describes a novel application of imaging surface plasmon resonance for the investigation of the surface exploration behavior of marine biofouling organisms, in particular barnacle larvae. This technique allows for real-time assessment of the rate of surface exploration and the deposition of protein-based adhesives onto surfaces, a process which was previously very difficult to investigate experimentally. In this thesis, the method was applied to several model surface chemistries, including the hydrogels described above. The new method promises to provide insights into the interactions between biofouling organisms and a surface during the critical stages prior to permanent settlement, hopefully facilitating the development of antibiofouling coatings for marine applications.

Ort, förlag, år, upplaga, sidor
Linköping: Linköping University Electronic Press, 2010. s. 74
Serie
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1302
Nationell ämneskategori
Naturvetenskap
Identifikatorer
urn:nbn:se:liu:diva-54304 (URN)978-91-7393-435-0 (ISBN)
Disputation
2010-03-19, Planck, Fysikhuset, Campus Valla, Linköpings universitet, Linköping, 00:00 (Engelska)
Opponent
Handledare
Tillgänglig från: 2010-03-08 Skapad: 2010-03-08 Senast uppdaterad: 2020-02-19Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Personposter BETA

Aldred, NickEkblad, TobiasAndersson, OlofLiedberg, Bo

Sök vidare i DiVA

Av författaren/redaktören
Aldred, NickEkblad, TobiasAndersson, OlofLiedberg, Bo
Av organisationen
Sensorvetenskap och MolekylfysikTekniska högskolan
Naturvetenskap

Sök vidare utanför DiVA

GoogleGoogle Scholar

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 252 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf