liu.seSök publikationer i DiVA
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
The M(n+1)AX(n) phases: Materials science and thin-film processing
Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska högskolan.ORCID-id: 0000-0003-1785-0864
Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska högskolan.
Uppsala University.
Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska högskolan.
Visa övriga samt affilieringar
2010 (Engelska)Ingår i: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 518, nr 8, s. 1851-1878Artikel, forskningsöversikt (Refereegranskat) Published
Abstract [en]

This article is a Critical review of the M(n + 1)AX(n) phases ("MAX phases", where n = 1, 2, or 3) from a materials science perspective. MAX phases are a class of hexagonal-structure ternary carbides and nitrides ("X") of a transition metal ("M") and an A-group element. The most well known are Ti2AlC, Ti3SiC2, and Ti4AlN3. There are similar to 60 MAX phases with at least 9 discovered in the last five years alone. What makes the MAX phases fascinating and potentially useful is their remarkable combination of chemical, physical, electrical, and mechanical properties, which in many ways combine the characteristics of metals and ceramics. For example, MAX phases are typically resistant to oxidation and corrosion, elastically stiff, but at the same time they exhibit high thermal and electrical conductivities and are machinable. These properties stem from an inherently nanolaminated crystal structure, with M1 + nXn slabs intercalated with pure A-element layers. The research on MAX phases has been accelerated by the introduction of thin-film processing methods. Magnetron sputtering and arc deposition have been employed to synthesize single-crystal material by epitaxial growth, which enables studies of fundamental material properties. However, the surface-initiated decomposition of M(n + 1)AX(n) thin films into MX compounds at temperatures of 1000-1100 degrees C is much lower than the decomposition temperatures typically reported for the corresponding bulk material. We also review the prospects for low-temperature synthesis, which is essential for deposition of MAX phases onto technologically important substrates. While deposition of MAX phases from the archetypical Ti-Si-C and Ti-Al-N systems typically requires synthesis temperatures of similar to 800 degrees C, recent results have demonstrated that V2GeC and Cr2AlC can be deposited at similar to 450 degrees C. Also, thermal spray of Ti2AlC powder has been used to produce thick coatings. We further treat progress in the use of first-principle calculations for predicting hypothetical MAX phases and their properties. Together with advances in processing and materials analysis, this progress has led to recent discoveries of numerous new MAX phases such as Ti4SiC3, Ta4AlC3. and Ti3SnC2. Finally, important future research directions are discussed. These include charting the unknown regions in phase diagrams to discover new equilibrium and metastable phases, as well as research challenges in understanding their physical properties, such as the effects of anisotropy, impurities, and vacancies on the electrical properties, and unexplored properties such as Superconductivity, magnetism, and optics.

Ort, förlag, år, upplaga, sidor
2010. Vol. 518, nr 8, s. 1851-1878
Nyckelord [en]
Nanolaminate, Ti3SiC2, Ti2AlC, Physical vapor deposition, Sputtering, Carbides, Ceramics
Nationell ämneskategori
Teknik och teknologier
Identifikatorer
URN: urn:nbn:se:liu:diva-54387DOI: 10.1016/j.tsf.2009.07.184ISI: 000274812800001OAI: oai:DiVA.org:liu-54387DiVA, id: diva2:303552
Anmärkning

Original Publication: Per Eklund, Manfred Beckers, Ulf Jansson, Hans Högberg and Lars Hultman, The Mn+1AXn phases: Materials science and thin-film processing, 2010, Thin Solid Films, (518), 8, 1851-1878. http://dx.doi.org/10.1016/j.tsf.2009.07.184 Copyright: Elsevier Science B.V., Amsterdam. http://www.elsevier.com/

Tillgänglig från: 2010-03-12 Skapad: 2010-03-12 Senast uppdaterad: 2019-01-28

Open Access i DiVA

fulltext(3116 kB)9748 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 3116 kBChecksumma SHA-512
ebcbb7e4f0a0c4c95c9f3121e744cb87fd972adbd2fec16f6220fae138342c100bb6e3cf0547432355d8521b8695c1d35e4d0abebbd10476491cd99b271cf83d
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltext

Personposter BETA

Eklund, PerBeckers, ManfredHögberg, HansHultman, Lars

Sök vidare i DiVA

Av författaren/redaktören
Eklund, PerBeckers, ManfredHögberg, HansHultman, Lars
Av organisationen
TunnfilmsfysikTekniska högskolan
I samma tidskrift
Thin Solid Films
Teknik och teknologier

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 9748 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 4519 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf