liu.seSök publikationer i DiVA
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Segmentation Methods for Medical Image Analysis: Blood vessels, multi-scale filtering and level set methods
Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV. Linköpings universitet, Institutionen för teknik och naturvetenskap, Digitala Medier. Linköpings universitet, Tekniska högskolan.ORCID-id: 0000-0002-6457-4914
2010 (Engelska)Licentiatavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Image segmentation is the problem of partitioning an image into meaningful parts, often consisting of an object and background. As an important part of many imaging applications, e.g. face recognition, tracking of moving cars and people etc, it is of general interest to design robust and fast segmentation algorithms. However, it is well accepted that there is no general method for solving all segmentation problems. Instead, the algorithms have to be highly adapted to the application in order to achieve good performance. In this thesis, we will study segmentation methods for blood vessels in medical images. The need for accurate segmentation tools in medical applications is driven by the increased capacity of the imaging devices. Common modalities such as CT and MRI generate images which simply cannot be examined manually, due to high resolutions and a large number of image slices. Furthermore, it is very difficult to visualize complex structures in three-dimensional image volumes without cutting away large portions of, perhaps important, data. Tools, such as segmentation, can aid the medical staff in browsing through such large images by highlighting objects of particular importance. In addition, segmentation in particular can output models of organs, tumors, and other structures for further analysis, quantification or simulation.

We have divided the segmentation of blood vessels into two parts. First, we model the vessels as a collection of lines and edges (linear structures) and use filtering techniques to detect such structures in an image. Second, the output from this filtering is used as input for segmentation tools. Our contributions mainly lie in the design of a multi-scale filtering and integration scheme for de- tecting vessels of varying widths and the modification of optimization schemes for finding better segmentations than traditional methods do. We validate our ideas on synthetical images mimicking typical blood vessel structures, and show proof-of-concept results on real medical images.

Ort, förlag, år, upplaga, sidor
Linköping: Linköping University Electronic Press , 2010. , s. 44
Serie
Linköping Studies in Science and Technology. Thesis, ISSN 0280-7971 ; 1434
Nyckelord [en]
Image segmentation, Medical image analysis, Level set method, Quadrature filter, Multi-scale
Nationell ämneskategori
Datorseende och robotik (autonoma system)
Identifikatorer
URN: urn:nbn:se:liu:diva-54181Lokalt ID: LIU-TEK-LIC-2010:5ISBN: 978-91-7393-410-7 (tryckt)OAI: oai:DiVA.org:liu-54181DiVA, id: diva2:310036
Presentation
2010-04-15, K3, Kåkenhus, Campus Norrköping, Linköpings universitet, Norrköping, 13:00 (Engelska)
Opponent
Handledare
Tillgänglig från: 2010-04-20 Skapad: 2010-03-01 Senast uppdaterad: 2018-01-12Bibliografiskt granskad
Delarbeten
1. Flexible and Topologically Localized Segmentation
Öppna denna publikation i ny flik eller fönster >>Flexible and Topologically Localized Segmentation
2007 (Engelska)Ingår i: EuroVis07 Joint Eurographics: IEEE VGTC Symposium on Visualization / [ed] Ken Museth, Torsten Möller, and Anders Ynnerman, Aire-la-Ville, Switzerland: Eurographics Association , 2007, , s. 179-186s. 179-186Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

One of the most common visualization tasks is the extraction of significant boundaries, often performed with iso- surfaces or level set segmentation. Isosurface extraction is simple and can be guided by geometric and topological analysis, yet frequently does not extract the desired boundary. Level set segmentation is better at boundary extrac- tion, but either leads to global segmentation without edges, [CV01], that scales unfavorably in 3D or requires an initial estimate of the boundary from which to locally solve segmentation with edges. We propose a hybrid system in which topological analysis is used for semi-automatic initialization of a level set segmentation, and geometric information bounded topologically is used to guide and accelerate an iterative segmentation algorithm that com- bines several state-of-the-art level set terms. We thus combine and improve both the flexible isosurface interface and level set segmentation without edges.

Ort, förlag, år, upplaga, sidor
Aire-la-Ville, Switzerland: Eurographics Association, 2007. s. 179-186
Nationell ämneskategori
Teknik och teknologier
Identifikatorer
urn:nbn:se:liu:diva-40841 (URN)54293 (Lokalt ID)978-3-905673-45-6 (ISBN)54293 (Arkivnummer)54293 (OAI)
Konferens
Eurographics/ IEEE-VGTC Symposium on Visualization, 23-25 May, Norrköping, Sweden
Tillgänglig från: 2009-10-10 Skapad: 2009-10-10 Senast uppdaterad: 2013-09-19
2. Phase Based Level Set Segmentation of Blood Vessels
Öppna denna publikation i ny flik eller fönster >>Phase Based Level Set Segmentation of Blood Vessels
2008 (Engelska)Ingår i: Proceedings of 19th International Conference on Pattern Recognition, IEEE Computer Society , 2008, s. 1-4Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

The segmentation and analysis of blood vessels hasreceived much attention in the research community. Theresults aid numerous applications for diagnosis andtreatment of vascular diseases. Here we use level setpropagation with local phase information to capture theboundaries of vessels. The basic notion is that localphase, extracted using quadrature filters, allows us todistinguish between lines and edges in an image. Notingthat vessels appear either as lines or edge pairs, weintegrate multiple scales and capture information aboutvessels of varying width. The outcome is a “global”phase which can be used to drive a contour robustly towardsthe vessel edges. We show promising results in2D and 3D. Comparison with a related method givessimilar or even better results and at a computationalcost several orders of magnitude less. Even with verysparse initializations, our method captures a large portionof the vessel tree.

Ort, förlag, år, upplaga, sidor
IEEE Computer Society, 2008
Serie
International Conference on Pattern Recognition, ISSN 1051-4651
Nationell ämneskategori
Medicinsk laboratorie- och mätteknik
Identifikatorer
urn:nbn:se:liu:diva-21054 (URN)10.1109/ICPR.2008.4760970 (DOI)000264729000023 ()978-1-4244-2175-6 (ISBN)978-1-4244-2174-9 (ISBN)
Konferens
19th International Conference on Pattern Recognition (ICPR 2008), 8-11 December 2008, Tampa, Finland
Anmärkning

©2009 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE: Gunnar Läthén, Jimmy Jonasson and Magnus Borga, Phase Based Level Set Segmentation of Blood Vessels, 2008, Proceedings of 19th International Conference on Pattern Recognition. http://dx.doi.org/10.1109/ICPR.2008.4760970

Tillgänglig från: 2009-09-28 Skapad: 2009-09-28 Senast uppdaterad: 2015-10-09
3. Momentum Based Optimization Methods for Level Set Segmentation
Öppna denna publikation i ny flik eller fönster >>Momentum Based Optimization Methods for Level Set Segmentation
2009 (Engelska)Ingår i: Momentum Based Optimization Methods for Level Set Segmentation: Second International Conference, SSVM 2009, Voss, Norway, June 1-5, 2009. Proceedings / [ed] Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen, Berlin: Springer Berlin/Heidelberg, 2009, s. 124-136Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Segmentation of images is often posed as a variational problem. As such, it is solved by formulating an energy functional depending on a contour and other image derived terms. The solution of the segmentation problem is the contour which extremizes this functional. The standard way of solving this optimization problem is by gradient descent search in the solution space, which typically suffers from many unwanted local optima and poor convergence. Classically, these problems have been circumvented by modifying the energy functional. In contrast, the focus of this paper is on alternative methods for optimization. Inspired by ideas from the machine learning community, we propose segmentation based on gradient descent with momentum. Our results show that typical models hampered by local optima solutions can be further improved by this approach. We illustrate the performance improvements using the level set framework.

Ort, förlag, år, upplaga, sidor
Berlin: Springer Berlin/Heidelberg, 2009
Serie
Lecture Notes in Computer Science, ISSN 0302-9743, E-ISSN 1611-3349 ; 5567
Nationell ämneskategori
Medicinsk laboratorie- och mätteknik
Identifikatorer
urn:nbn:se:liu:diva-21037 (URN)10.1007/978-3-642-02256-2_11 (DOI)000270543900011 ()3-642-02255-3 (ISBN)978-3-642-02255-5 (ISBN)978-3-642-02256-2 (ISBN)
Konferens
Second International Conference, SSVM 2009, June 1-5, Voss, Norway
Anmärkning

Original Publication: Gunnar Läthén, Thord Andersson, Reiner Lenz and Magnus Borga, Momentum Based Optimization Methods for Level Set Segmentation, 2009, Lecture Notes in Computer Science 5567: Scale Space and Variational Methods in Computer Vision, 124-136. http://dx.doi.org/10.1007/978-3-642-02256-2_11 Copyright: Springer http://www.springerlink.com/

Tillgänglig från: 2009-09-28 Skapad: 2009-09-28 Senast uppdaterad: 2018-02-19Bibliografiskt granskad
4. A Fast Optimization Method for Level Set Segmentation
Öppna denna publikation i ny flik eller fönster >>A Fast Optimization Method for Level Set Segmentation
2009 (Engelska)Ingår i: Image Analysis: 16th Scandinavian Conference, SCIA 2009, Oslo, Norway, June 15-18, 2009. Proceedings / [ed] A.-B. Salberg, J.Y. Hardeberg, and R. Jenssen, Springer Berlin/Heidelberg, 2009, s. 400-409Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Level set methods are a popular way to solve the image segmentation problem in computer image analysis. A contour is implicitly represented by the zero level of a signed distance function, and evolved according to a motion equation in order to minimize a cost function. This function defines the objective of the segmentation problem and also includes regularization constraints. Gradient descent search is the de facto method used to solve this optimization problem. Basic gradient descent methods, however, are sensitive for local optima and often display slow convergence. Traditionally, the cost functions have been modified to avoid these problems. In this work, we instead propose using a modified gradient descent search based on resilient propagation (Rprop), a method commonly used in the machine learning community. Our results show faster convergence and less sensitivity to local optima, compared to traditional gradient descent.

Ort, förlag, år, upplaga, sidor
Springer Berlin/Heidelberg, 2009
Serie
Lecture Notes in Computer Science, ISSN 0302-9743, E-ISSN 1611-3349 ; 5575
Nyckelord
Image segmentation - level set method - optimization - gradient descent - Rprop - variational problems - active contours
Nationell ämneskategori
Teknik och teknologier
Identifikatorer
urn:nbn:se:liu:diva-19313 (URN)10.1007/978-3-642-02230-2_41 (DOI)000268661000041 ()978-3-642-02229-6 (ISBN)978-3-642-02230-2 (ISBN)
Konferens
16th Scandinavian Conference on Image Analysis, June 15-18 2009, Oslo, Norway
Tillgänglig från: 2009-07-09 Skapad: 2009-06-17 Senast uppdaterad: 2018-01-23Bibliografiskt granskad
5. Blood vessel segmentation using multi-scale quadrature filtering
Öppna denna publikation i ny flik eller fönster >>Blood vessel segmentation using multi-scale quadrature filtering
2010 (Engelska)Ingår i: Pattern Recognition Letters, ISSN 0167-8655, E-ISSN 1872-7344, Vol. 31, nr 8, s. 762-767Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The segmentation of blood vessels is a common problem in medical imagingand various applications are found in diagnostics, surgical planning, trainingand more. Among many dierent techniques, the use of multiple scales andline detectors is a popular approach. However, the typical line lters usedare sensitive to intensity variations and do not target the detection of vesselwalls explicitly. In this article, we combine both line and edge detection usingquadrature lters across multiple scales. The lter result gives well denedvessels as linear structures, while distinct edges facilitate a robust segmentation.We apply the lter output to energy optimization techniques for segmentationand show promising results in 2D and 3D to illustrate the behavior of ourmethod. The conference version of this article received the best paper award inthe bioinformatics and biomedical applications track at ICPR 2008.

Ort, förlag, år, upplaga, sidor
Elsevier, 2010
Nyckelord
Image segmentation, Blood vessels, Medical imaging, Multi-scale, Quadrature filter, Level set method
Nationell ämneskategori
Medicinsk laboratorie- och mätteknik
Identifikatorer
urn:nbn:se:liu:diva-21046 (URN)10.1016/j.patrec.2009.09.020 (DOI)000277552600014 ()
Anmärkning
Original Publication: Gunnar Läthén, Jimmy Jonasson and Magnus Borga, Blood vessel segmentation using multi-scale quadrature filtering, 2010, Pattern Recognition Letters, (31), 8, 762-767. http://dx.doi.org/10.1016/j.patrec.2009.09.020 Copyright: Elsevier Science B.V., Amsterdam. http://www.elsevier.com/ Tillgänglig från: 2009-09-28 Skapad: 2009-09-28 Senast uppdaterad: 2017-12-13

Open Access i DiVA

Segmentation Methods for Medical Image Analysis : Blood vessels, multi-scale filtering and level set methods(1248 kB)16316 nedladdningar
Filinformation
Filnamn FULLTEXT02.pdfFilstorlek 1248 kBChecksumma SHA-512
6cd0636f8268556e1d76f91e6688bbb6d6eefdcc874abfe26a9ec7fea2b35a125b8df433ccf4a9c62813cce75505433eaa02d60396bb53a446f86ffe0abd7f88
Typ fulltextMimetyp application/pdf
Cover(230 kB)51 nedladdningar
Filinformation
Filnamn COVER02.pdfFilstorlek 230 kBChecksumma SHA-512
902c6dd1d6207ea15e8ebfcbca685555b4145212cebc90ec8ddd7b7ffc822b2450d46f6e940c6ff603f7ae1b7a00265b3733fef97208d0a6b333bd1f679fa580
Typ coverMimetyp application/pdf

Personposter BETA

Läthén, Gunnar

Sök vidare i DiVA

Av författaren/redaktören
Läthén, Gunnar
Av organisationen
Centrum för medicinsk bildvetenskap och visualisering, CMIVDigitala MedierTekniska högskolan
Datorseende och robotik (autonoma system)

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 16320 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

isbn
urn-nbn

Altmetricpoäng

isbn
urn-nbn
Totalt: 875 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf