liu.seSearch for publications in DiVA
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Interaction of waves with frictional interfaces using summation-by-parts difference operators: Weak enforcement of nonlinear boundary conditions
Department of Geophysics, Stanford, CA, USA.
Department of Geophysics, Stanford, CA, USA.
Linköpings universitet, Matematiska institutionen. Linköpings universitet, Tekniska högskolan. Linköpings universitet, Matematiska institutionen, Beräkningsvetenskap.ORCID-id: 0000-0002-7972-6183
2011 (engelsk)Rapport (Fagfellevurdert)
Abstract [en]

We present a high-order difference method for problems in elastodynamics involving the interaction of waves with highly nonlinear frictional interfaces. We restrict our attention to two-dimensional antiplane problems involving deformation in only one direction. Jump conditions that relate tractions on the interface, or fault, to the relative sliding velocity across it are of a form closely related to those used in earthquake rupture models and other frictional sliding problems. By using summation-by-parts (SBP) finite difference operators and weak enforcement of boundary and interface conditions, a strictly stable method is developed. Furthermore, it is shown that unless the nonlinear interface conditions are formulated in terms of characteristic variables, as opposed to the physical variables in terms of which they are more naturally stated, the semi-discretized system of equations can become extremely stiff, preventing efficient solution using explicit time integrators.

The use of SBP operators also provides a rigorously defined energy balance for the discretized problem that, as the mesh is refined, approaches the exact energy balance in the continuous problem. This enables one to investigate earthquake energetics, for example the efficiency with which elastic strain energy released during rupture is converted to radiated energy carried by seismic waves, rather than dissipated by frictional sliding of the fault. These theoretical results are confirmed by several numerical tests in both one and two dimensions demonstrating the computational efficiency, the high-order convergence rate of the method, the benefits of using strictly stable numerical methods for long time integration, and the accuracy of the energy balance.

sted, utgiver, år, opplag, sider
Linköping: Linköping University Electronic Press , 2011. , s. 37
Serie
LiTH-MAT-R, ISSN 0348-2960 ; 2011:5
Emneord [en]
high order finite difference; nonlinear boundary conditions; simultaneous approximation term method; elastodynamics; summation-byparts; friction; wave propagation
HSV kategori
Identifikatorer
URN: urn:nbn:se:liu:diva-67048ISRN: LiTH-MAT-R--2011/05--SEOAI: oai:DiVA.org:liu-67048DiVA, id: diva2:406339
Tilgjengelig fra: 2011-03-25 Laget: 2011-03-25 Sist oppdatert: 2013-08-30

Open Access i DiVA

Fulltekst mangler i DiVA

Personposter BETA

Nordström, Jan

Søk i DiVA

Av forfatter/redaktør
Nordström, Jan
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric

urn-nbn
Totalt: 278 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf