liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Effect of peak power in reactive high power impulse magnetron sputtering of titanium dioxide
Linköping University, Department of Physics, Chemistry and Biology, Plasma and Coating Physics. Linköping University, The Institute of Technology.
Linköping University, Department of Physics, Chemistry and Biology, Plasma and Coating Physics. Linköping University, The Institute of Technology.ORCID iD: 0000-0002-1744-7322
Linköping University, Department of Physics, Chemistry and Biology, Plasma and Coating Physics. Linköping University, The Institute of Technology.
Linköping University, Department of Physics, Chemistry and Biology, Plasma and Coating Physics. Linköping University, The Institute of Technology.
Show others and affiliations
2011 (English)In: Surface & Coatings Technology, ISSN 0257-8972, E-ISSN 1879-3347, Vol. 205, no 20, p. 4828-4831Article in journal (Refereed) Published
Abstract [en]

The effect of peak power in a high power impulse magnetron sputtering (HiPIMS) reactive deposition of TiO(2) films has been studied with respect to the deposition rate and coating properties. With increasing peak power not only the ionization of the sputtered material increases but also their energy. In order to correlate the variation in the ion energy distributions with the film properties, the phase composition, density and optical properties of the films grown with different HiPIMS-parameters have been investigated and compared to a film grown using direct current magnetron sputtering (DCMS). All experiments were performed for constant average power and pulse on time (100W and 35 mu s, respectively), different peak powers were achieved by varying the frequency of pulsing. Ion energy distributions for Ti and O and its dependence on the process conditions have been studied. It was found that films with the highest density and highest refractive index were grown under moderate HiPIMS conditions (moderate peak powers) resulting in only a small loss in mass-deposition rate compared to DCMS. It was further found that TiO2 films with anatase and rutile phases can be grown at room temperature without substrate heating and without post-deposition annealing.

Place, publisher, year, edition, pages
Elsevier Science B.V., Amsterdam. , 2011. Vol. 205, no 20, p. 4828-4831
Keywords [en]
HiPIMS; Titanium dioxide; Rutile; Anatase; Reactive sputtering; TiO(2)
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:liu:diva-69795DOI: 10.1016/j.surfcoat.2011.04.071ISI: 000292361400013OAI: oai:DiVA.org:liu-69795DiVA, id: diva2:433576
Note

Original Publication: Montri Aiempanakit, Ulf Helmersson, Asim Aijaz, Petter Larsson, Roger Magnusson, Jens Jensen and Tomas Kubart, Effect of peak power in reactive high power impulse magnetron sputtering of titanium dioxide, 2011, Surface & Coatings Technology, (205), 20, 4828-4831. http://dx.doi.org/10.1016/j.surfcoat.2011.04.071 Copyright: Elsevier Science B.V., Amsterdam. http://www.elsevier.com/

Available from: 2011-08-10 Created: 2011-08-08 Last updated: 2017-12-08
In thesis
1. Reactive High Power Impulse Magnetron Sputtering of Metal Oxides
Open this publication in new window or tab >>Reactive High Power Impulse Magnetron Sputtering of Metal Oxides
2013 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The work presented in this thesis deals with reactive magnetron sputtering processes of metal oxides with a prime focus on high power impulse magnetron sputtering (HiPIMS). The aim of the research is to contribute towards understanding of the fundamental mechanisms governing a reactive HiPIMS process and to investigate their implications on the film growth.

The stabilization of the HiPIMS process at the transition zone between the metal and compound modes of Al-O and Ce-O was investigated for realizing the film deposition with improved properties and higher depositionrate and the results are compared with direct current magnetron sputtering (DCMS) processes. The investigations were made for different sputtering conditions obtained by varying pulse frequency, peak power and pumping speed. For the experimental conditions employed, it was found that reactive HiPIMS can eliminate/suppress the hysteresis effect for a range of frequency, leading to a stable deposition process with a high deposition rate. The hysteresis was found to be eliminated for Al-O while for Ce-O, it was not eliminated but suppressed as compared to the DCMS. The behavior of elimination/suppression of the hysteresis may be influenced by high erosion rate during the pulse, limited target oxidation between the pulses and gas rarefaction effects in front of the target. Similar investigations were made for Ti-O employing a larger target and the hysteresis was found to be suppressed as compared to the respective DCMS, but not eliminated. It was shown that the effect of gas rarefaction is a powerful mechanism for preventing oxide formation upon the target surface. The impact of this effect depends on the off-time between the pulses. Longer off-times reduce the influence of gas rarefaction.

To gain a better understanding of the discharge current-voltage behavior in a reactive HiPIMS process of metal oxides, the ion compositions and ion energy distributions were measured for Al-O and Ti-O using time averaged and time-resolved mass spectrometry. It was shown that the different discharge current behavior between non-reactive and reactive modes couldn’t be explained solely by the change in the secondary electron emission yield from the sputtering target. The high fluxes of O1+ ions contribute substantially to the discharge current giving rise to an increase in the discharge current in the oxide mode as compared to the metal mode. The results also show that the source of oxygen in the discharge is both, the target surface (via sputtering) as well as the gas phase.

The investigations on the properties of HiPIMS grown films were made by synthesizing metal oxide thin films using Al-O, Ti-O and Ag-Cu-O. It was shown that Al2O3 films grown under optimum condition using reactive HiPIMS exhibit superior properties as compared to DCMS. The HiPIMS grown films exhibit higher refractive index as well as the deposition rate of the film growth was higher under the same operating conditions. The effect of HiPIMS peak power on TiO2 film properties was investigated and the results are compared with the DCMS. The properties of TiO2 films such as refractive index, film density and phase structure were experimentally determined. The ion composition during film growth was investigated and an explanation on the correlation of the film properties and ion energy was made. It was found that energetic and ionized sputtered flux in reactive HiPIMS can be used to tailor the phase formation of the TiO2 films with high peak powers facilitating the rutile phase while the anatase phase can be obtained using low peak powers. These phases can be obtained at room temperature without external substrate heating or post-deposition annealing which is in contrast to the reactive DCMS where both, anatase and rutile phases of TiO2 are obtained at either elevated growth temperatures or by employing post deposition annealing. The effect of HiPIMS peak power on the crystal structure of the grown films was also investigated for ternary compound, Ag-Cu-O, for which films were synthesized using reactive HiPIMS as well as reactive DCMS. It was found that the stoichiometric Ag2Cu2O3 can be synthesized by all examined pulsing peak powers. The oxygen gas flow rate required to form stoichiometric films is proportional to the pulsing peak power in HiPIMS. DCMS required low oxygen gas flow to synthesis the stoichiometric films. The HiPIMS grown films exhibit more pronounced crystalline structure as compared to the films grown using DCMS. This is likely an effect of highly ionized depositing flux which facilitates an intense ion bombardment during the film growth using HiPIMS. Our results indicate that Ag2Cu2O3film formation is very sensitive to the ion bombardment on the substrate as well as to the backattraction of metal and oxygen ions to the target.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2013. p. 51
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1519
National Category
Natural Sciences
Identifiers
urn:nbn:se:liu:diva-91259 (URN)978-91-7519-622-0 (ISBN)
Public defence
2013-05-17, Planck, Fysikhuset, Campus Valla, Linköpings universitet, Linköping, 10:15 (English)
Opponent
Supervisors
Available from: 2013-04-18 Created: 2013-04-18 Last updated: 2019-12-03Bibliographically approved
2. Synthesis of Carbon-based and Metal-Oxide Thin Films using High Power Impulse Magnetron Sputtering
Open this publication in new window or tab >>Synthesis of Carbon-based and Metal-Oxide Thin Films using High Power Impulse Magnetron Sputtering
2014 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The work presented in this thesis deals with synthesis of carbon-based as well as metal-oxide thin films using highly ionized plasmas. The principal deposition method employed was high power impulse magnetron sputtering (HiPIMS). The investigations on plasma chemistry, plasma energetics, plasma-film interactions and its correlation to film growth and resulting film properties were made. The thesis is divided into two parts: (i) HiPIMS-based deposition of carbon-based thin films and (ii) HiPIMS-based deposition of metal-oxide thin films.

In the first part of the thesis, HiPIMS based strategies are presented that were developed to address the fundamental issues of low degree of carbon ionization and low deposition rates of carbon film growth in magnetron sputtering. In the first study, a new strategy was introduced for increasing the degree of ionization of sputtered carbon via increasing the electron temperature in the discharge by using a higher ionization potential buffer gas (Ne) in place of commonly used Ar. A direct consequence of enhanced electron temperatures was observed in the form of measured large fluxes of ionized carbon at the substrate position. Consequently, high mass densities of the resulting amorphous carbon (a-C) thin films reaching 2.8 g/cm3 were obtained.

In another study, feasibility of HiPIMS-based high density discharges for high-rate synthesis of dense and hard a-C thin films was explored. A strategy was compiled and implemented that entailed coupling a hydrocarbon precursor gas (C2H2) with high density discharges generated by the superposition of HiPIMS and direct current magnetron sputtering (DCMS). Appropriate control of discharge density (by tuning HiPIMS/DCMS power ratio), gas phase composition and energy of the ionized depositing species lead to a route capable of providing ten-fold increase in the deposition rate of a-C film growth compared to that obtained using HiPIMS Ar discharge in the first study. The increased deposition rate was achieved without significant incorporation of H (<10 %) and with relatively high hardness (>25 GPa) and mass density (~2.32 g/cm3). The knowledge gained in this work was utilized in a subsequent work where the feasibility of adding high ionization potential buffer gas (Ne) to increase the electron temperature in an Ar/C2H2 HiPIMS discharge was explored. It was found that the increased electron temperature lead to enhanced dissociation of hydrocarbon precursor and an increased H incorporation into the growing film. The resulting a-C thin films exhibited high hardness (~ 25 GPa), mass densities in the order of 2.2 g/cm3 and H content as low as about 11%. The striking feature of the resulting films was low stress levels where the films exhibited compressive stresses in the order of 100 MPa.

In the second part of the thesis, investigations on reactive HiPIMS discharge characteristics were made for technologically relevant metal-oxide systems. In the first study, the discharge characteristics of Ti-O and Al-O were investigated by studying the discharge current characteristics and measuring the ion flux composition. Both, Ti-O and Al-O discharges were dominated by large fluxes of ionized metallic as well as sputtering and reactive gases species. The generation of large ionized fluxes influenced the discharge characteristics consequently surpassing the changes in the secondary electron emission yields which, in the case of DCMS discharges entail contrasting behavior of the discharge voltage for the two material systems. The study also suggested that the source of oxygen ions in the case of reactive HiPIMS is both, the target surface (via sputtering) as well as gas phase.

In a subsequent study, the knowledge gained from the studies on metal-oxide HiPIMS discharges was utilized for investigating the behavior of reactive HiPIMS discharges related to ternary compound thin film growth. In this work Al-Si-O system, which is a promising candidate for anti-reflective and solar thermal applications, was employed to carry out the investigations under varied target compositions (Al, Al0.5Si0.5, and Al0.1Si0.9). It was found that the discharge current behavior of metal and oxide modes of Al-Si-O HiPIMS discharges were similar to those of Al-O and were independent of the target composition. The influence of energy and composition of the ionized depositing fluxes on the film growth was also investigated. It was shown that stoichiometric Al-Si-O thin films exhibiting a refractive index below 1.6 (which is desired for anti-reflective applications) can be grown. Furthermore, the refractive index and chemical composition of the resulting films were found to be unchanged with respect to the energy of the depositing species.

The effect of ionized deposition fluxes that are generated in metal-oxide HiPIMS discharges was also investigated for the phase composition and optical properties of TiO2 thin films. It was found that energetic and ionized sputtered flux in reactive HiPIMS can be used to tailor the phase formation of the TiO2 films with high peak powers facilitating the rutile phase while the anatase phase can be obtained using low peak powers. It was also demonstrated that using HiPIMS, these phases can be obtained at room temperature without external substrate heating or  post-deposition annealing. The results on plasma and film properties were also compared with DCMS.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2014. p. 72
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1572
National Category
Natural Sciences
Identifiers
urn:nbn:se:liu:diva-104265 (URN)10.3384/diss.diva-104265 (DOI)978-91-7519-408-0 (ISBN)
Public defence
2014-03-17, Planck, Fysikhuset, Campus Valla, Linköpings universitet, Linköping, 10:15 (English)
Opponent
Supervisors
Available from: 2014-02-13 Created: 2014-02-13 Last updated: 2019-11-19Bibliographically approved

Open Access in DiVA

fulltext(439 kB)1333 downloads
File information
File name FULLTEXT01.pdfFile size 439 kBChecksum SHA-512
55932676150424ba3ca9e14cc4ca253079cff332353f6cf2d38ac4ff1e36a8274a760fa32e0ded4df654952bfccafa38aa253ed90edc2276057cd629a7bc2c40
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Authority records

Aiempanakit, MontriHelmersson, UlfLarsson, PetterMagnusson, RogerJensen, Jens

Search in DiVA

By author/editor
Aiempanakit, MontriHelmersson, UlfLarsson, PetterMagnusson, RogerJensen, Jens
By organisation
Plasma and Coating PhysicsThe Institute of TechnologyApplied Optics Faculty of Science & EngineeringThin Film Physics
In the same journal
Surface & Coatings Technology
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
Total: 1333 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 1042 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf