liu.seSök publikationer i DiVA
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Optimization of Computational Resources for MIMO Detection
Linköpings universitet, Institutionen för systemteknik, Kommunikationssystem. Linköpings universitet, Tekniska högskolan.
2011 (Engelska)Licentiatavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

For the past decades, the demand in transferring large amounts of data rapidly and reliably has been increasing drastically. One of the more promising techniques that can provide the desired performance is the multiple-input multiple-output (MIMO) technology where multiple antennas are placed at both the transmitting and receiving side of the communication link. One major implementation difficulty of the MIMO technology is the signal separation (detection) problem at the receiving side of the MIMO link. This is due to the fact that the transmitted signals interfere with each other and that separating them can be very difficult if the MIMO channel conditions are not beneficial, i.e., the channel is not well-conditioned.

For well-conditioned channels, low-complexity detection methods are often sufficiently accurate. In such cases, performing computationally very expensive optimal detection would be a waste of computational power. This said, for MIMO detection in a coded system, there is always a trade-off between performance and complexity. The fundamental question is, can we save computational resources by performing optimal detection only when it is needed, and something simpler when it is not? This is the question that this thesis aims to answer. In doing so, we present a general framework for adaptively allocating computational resources to different (“simple” and“difficult”) detection problems. This general framework is applicable to any MIMO detector and scenario of choice, and it is exemplified using one particular detection method for which specific allocation techniques are developed and evaluated.

Ort, förlag, år, upplaga, sidor
Linköping: Linköping University Electronic Press , 2011. , s. 26
Serie
Linköping Studies in Science and Technology. Thesis, ISSN 0280-7971 ; 1514
Nationell ämneskategori
Kommunikationssystem
Identifikatorer
URN: urn:nbn:se:liu:diva-72368ISBN: 978-91-7393-011-6 (tryckt)OAI: oai:DiVA.org:liu-72368DiVA, id: diva2:459671
Presentation
2011-12-19, Campus Valla, Linköpings universitet, Linköping, 13:15 (Engelska)
Opponent
Handledare
Tillgänglig från: 2011-11-28 Skapad: 2011-11-28 Senast uppdaterad: 2016-08-31Bibliografiskt granskad
Delarbeten
1. Allocation of Computational Resources for Soft MIMO Detection
Öppna denna publikation i ny flik eller fönster >>Allocation of Computational Resources for Soft MIMO Detection
2011 (Engelska)Ingår i: IEEE Journal of Selected Topics in Signal Processing, ISSN 1932-4553, Vol. 5, nr 8, s. 1451-1461Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

We consider soft MIMO detection for the case of block fading. That is, the transmitted codeword spans over several independent channel realizations and several instances of the detection problem must be solved for each such realization. We develop methods that adaptively allocate computational resources to the detection problems of each channel realization, under a total per-codeword complexity constraint. Our main results are a formulation of the problem as a mathematical optimization problem with a well-defined objective function and constraints, and algorithms that solve this optimization problem efficiently computationally.

Ort, förlag, år, upplaga, sidor
IEEE conference proceedings, 2011
Nationell ämneskategori
Signalbehandling
Identifikatorer
urn:nbn:se:liu:diva-69612 (URN)10.1109/JSTSP.2011.2162719 (DOI)000297348500006 ()
Anmärkning
©2011 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. Mirsad Čirkić, Daniel Persson and Erik G. Larsson, Allocation of Computational Resources for Soft MIMO Detection, 2011, accepted IEEE Journal of Selected Topics in Signal Processing Tillgänglig från: 2011-07-06 Skapad: 2011-07-06 Senast uppdaterad: 2016-08-31
2. Approximating the LLR Distribution for a Class of Soft-Output MIMO Detectors
Öppna denna publikation i ny flik eller fönster >>Approximating the LLR Distribution for a Class of Soft-Output MIMO Detectors
2012 (Engelska)Ingår i: IEEE Transactions on Signal Processing, ISSN 1053-587X, E-ISSN 1941-0476, Vol. 60, nr 12, s. 6421-6434Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

We present approximations of the LLR distribution for a class of fixed-complexity soft-output MIMO detectors, such as the optimal soft detector and the soft-output via partial marginalization detector. More specifically, in a MIMO AWGN setting, we approximate the LLR distribution conditioned on the transmitted signal and the channel matrix with a Gaussian mixture model (GMM). Our main results consist of an analytical expression of the GMM model (including the number of modes and their corresponding parameters) and a proof that, in the limit of high SNR, this LLR distribution converges in probability towards a unique Gaussian distribution.

Ort, förlag, år, upplaga, sidor
Institute of Electrical and Electronics Engineers (IEEE), 2012
Nyckelord
Fixed-complexity sphere-decoder; Gaussian mixture model; LLR distribution; MIMO detection; partial marginalization
Nationell ämneskategori
Teknik och teknologier
Identifikatorer
urn:nbn:se:liu:diva-87205 (URN)10.1109/TSP.2012.2217336 (DOI)000311805000024 ()
Anmärkning

On the defence date of the Licentiate Thesis the status of this article was Manuscript and the title was Approximating the LLR Distribution for the Optimal and Partial Marginalization MIMO Detectors.

Tillgänglig från: 2013-01-14 Skapad: 2013-01-14 Senast uppdaterad: 2017-12-06Bibliografiskt granskad

Open Access i DiVA

Optimization of Computational Resources for MIMO Detection(223 kB)574 nedladdningar
Filinformation
Filnamn FULLTEXT02.pdfFilstorlek 223 kBChecksumma SHA-512
c8e09a504eeae8dc5dfea3000b19a12d67511d3307611daf2d0e0d2a82472598ccc0e9b8a1a306de79b376b8c5b945ee3e9a8e7367400a1dcccb4b8a2a34c4d1
Typ fulltextMimetyp application/pdf
omslag(84 kB)28 nedladdningar
Filinformation
Filnamn COVER01.pdfFilstorlek 84 kBChecksumma SHA-512
e0ffb4f151430916679bec6d3cd2126736fcb129f8df9feb851025102f3a2a73a7b46f5bc13be8538771c7d05af1117b14564196cf9bd55f9d75433c3e10823a
Typ coverMimetyp application/pdf

Personposter BETA

Čirkić, Mirsad

Sök vidare i DiVA

Av författaren/redaktören
Čirkić, Mirsad
Av organisationen
KommunikationssystemTekniska högskolan
Kommunikationssystem

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 574 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

isbn
urn-nbn

Altmetricpoäng

isbn
urn-nbn
Totalt: 786 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf