liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Two-phase quadrature domains
University of College Dublin.
Linköping University, Department of Mathematics, Applied Mathematics. Linköping University, The Institute of Technology.
2012 (English)In: Journal d'Analyse Mathematique, ISSN 0021-7670, E-ISSN 1565-8538, Vol. 116, p. 335-354Article in journal (Refereed) Published
Abstract [en]

Recent work on two-phase free boundary problems has led to the investigation of a new type of quadrature domain for harmonic functions. This paper develops a method of constructing such quadrature domains based on the technique of partial balayage, which has proved to be a useful tool in the study of one-phase quadrature domains and Hele-Shaw flows.

Place, publisher, year, edition, pages
Springer Verlag (Germany) , 2012. Vol. 116, p. 335-354
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:liu:diva-76547DOI: 10.1007/s11854-012-0009-3ISI: 000301446000009OAI: oai:DiVA.org:liu-76547DiVA, id: diva2:515116
Available from: 2012-04-12 Created: 2012-04-11 Last updated: 2017-12-07

Open Access in DiVA

fulltext(416 kB)386 downloads
File information
File name FULLTEXT01.pdfFile size 416 kBChecksum SHA-512
4ba3b74ab2ac56d7ad061b32a6510c83fb7c0b17a1001c61a9c1961f20cc230ec77855eab650f7645d8a192e7a76682cec11605983fff34c5fe0a1d469959511
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Authority records

Sjödin, Tomas

Search in DiVA

By author/editor
Sjödin, Tomas
By organisation
Applied MathematicsThe Institute of Technology
In the same journal
Journal d'Analyse Mathematique
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 386 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 168 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf