liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Chirality-induced polarization effects in the cuticle of scarab beetles: 100 years after Michelson
Linköping University, Department of Physics, Chemistry and Biology, Applied Optics . Linköping University, The Institute of Technology.ORCID iD: 0000-0001-9229-2028
Linköping University, Department of Physics, Chemistry and Biology, Applied Optics . Linköping University, The Institute of Technology.ORCID iD: 0000-0002-6371-0638
Linköping University, Department of Physics, Chemistry and Biology, Ecology. Linköping University, The Institute of Technology.
Linköping University, Department of Physics, Chemistry and Biology, Applied Optics . Linköping University, The Institute of Technology.ORCID iD: 0000-0003-2749-8008
2012 (English)In: Philosophical Magazine, ISSN 1478-6435, E-ISSN 1478-6443, Vol. 92, no 12, p. 1583-1599Article in journal (Refereed) Published
Abstract [en]

One hundred years ago Michelson discovered circular polarization in reflection from beetles. Today a novel Mueller-matrix ellipsometry setup allows unprecedented detailed characterization of the beetles polarization properties. A formalism based on elliptical polarization for description of reflection from scarab beetles is here proposed and examples are given on four beetles of different character: Coptomia laevis - a simple dielectric mirror; Cetonia aurata - a left-hand narrow- band elliptical polarizer; Anoplognathus aureus - a broad-band elliptical polarizer; and Chrysina argenteola - a left-hand polarizer for visible light at small angles, whereas for larger angles, red reflected light is right-handed polarized. We confirm the conclusion of previous studies which showed that a detailed quantification of ellipticity and degree of polarization of cuticle reflection can be performed instead of only determining whether reflections are circularly polarized or not. We additionally investigate reflection as a function of incidence angle. This provides much richer information for understanding the behaviour of beetles and for structural analysis.

Place, publisher, year, edition, pages
Taylor and Francis: STM, Behavioural Science and Public Health Titles / Taylor and Francis , 2012. Vol. 92, no 12, p. 1583-1599
Keywords [en]
scarab beetles, Mueller-matrix ellipsometry, elliptical polarization, structural colours
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:liu:diva-77876DOI: 10.1080/14786435.2011.648228ISI: 000303578700008OAI: oai:DiVA.org:liu-77876DiVA, id: diva2:529680
Note
Funding Agencies|Knut and Alice Wallenberg foundation||Swedish Research Council||Available from: 2012-05-31 Created: 2012-05-31 Last updated: 2017-12-07
In thesis
1. Mueller matrix ellipsometry studies of nanostructured materials
Open this publication in new window or tab >>Mueller matrix ellipsometry studies of nanostructured materials
2014 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Materials can be tailored on the nano-scale to show properties that cannot be found in bulk materials. Often these properties reveal themselves when electromagnetic radiation, e.g. light, interacts with the material. Numerous examples of such types of materials are found in nature. There are for example many insects and birds with exoskeletons or feathers that reflect light in special ways. Of special interest in this work is the scarab beetle Cetonia aurata which has served as inspiration to develop advanced nanostructures due to its ability to turn unpolarized light into almost completely circularly polarized light. The objectives of this thesis are to design and characterize bioinspired nanostructures and to develop optical methodology for their analysis.

Mueller-matrix ellipsometry has been used to extract optical and structural properties of nanostructured materials. Mueller-matrix ellipsometry is an excellent tool for studying the interaction between nanostructures and light. It is a non-destructive method and provides a complete description of the polarizing properties of a sample and allows for determination of structural parameters.

Three types of nanostructures have been studied. The rst is an array of carbon nanobers grown on a conducting substrate. Detailed information on physical symmetries and band structure of the material were determined. Furthermore, changes in its optical properties when the individual nanobers were electromechanically bent to alter the periodicity of the photonic crystal were studied. The second type of nanostructure studied is bioinspired lms with nanospirals of InxAl1–xN which reflect light with a high degree of circular polarization in a narrow spectral band. These nanostructures were grown under controlled conditions to form columnar structures with an internally graded refractive index responsible for the ability to reflect circularly polarized light. Finally, angle-dependent Mueller matrices were recorded of natural nanostructures in C. aurata with the objective to refine the methodology for structural analysis. A Cloude sum decomposition was applied and a more stable regression-based decomposition was developed for deepened analysis of these depolarizing Mueller matrices. It was found that reflection at near-normal incidence from C. aurata can be described as a sum reflection o a mirror and a left-handed circular polarizer. At oblique incidence the description becomes more complex and involves additional optical components.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2014. p. 46
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1631
National Category
Physical Sciences
Identifiers
urn:nbn:se:liu:diva-111947 (URN)10.3384/diss.diva-111947 (DOI)978-91-7519-200-0 (ISBN)
Public defence
2014-12-12, Planck, Fysikhuset, Campus Valla, Linköpings universitet, Linköping, 09:15 (English)
Opponent
Supervisors
Available from: 2014-11-11 Created: 2014-11-11 Last updated: 2019-11-19Bibliographically approved

Open Access in DiVA

fulltext(563 kB)1853 downloads
File information
File name FULLTEXT01.pdfFile size 563 kBChecksum SHA-512
feb2b99970bc22d4a56cde848486926e0405e216feaba54fda1b58f8223d55379dbe7f1832c8fff2f6cbe28d27961e1e2dee8c6815ddd265e70713d038c82c11
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Authority records

Arwin, HansMagnusson, RogerLandin, JanJärrendahl, Kenneth

Search in DiVA

By author/editor
Arwin, HansMagnusson, RogerLandin, JanJärrendahl, Kenneth
By organisation
Applied Optics The Institute of TechnologyEcology
In the same journal
Philosophical Magazine
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
Total: 1853 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 1950 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf