liu.seSök publikationer i DiVA
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Global search strategies for solving multilinear least-squares problems
Linköpings universitet, Institutionen för medicinsk teknik, Medicinsk informatik. Linköpings universitet, Tekniska högskolan.
Linköpings universitet, Matematiska institutionen, Optimeringslära. Linköpings universitet, Tekniska högskolan.ORCID-id: 0000-0003-1836-4200
Linköpings universitet, Institutionen för medicinsk teknik, Medicinsk informatik. Linköpings universitet, Tekniska högskolan.ORCID-id: 0000-0002-9091-4724
Linköpings universitet, Matematiska institutionen, Matematik och tillämpad matematik. Linköpings universitet, Tekniska högskolan. (Optimization)
2012 (Engelska)Ingår i: Sultan Qaboos University Journal for Science, ISSN 1027-524X, Vol. 17, nr 1, s. 12-21Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The multilinear least-squares (MLLS) problem is an extension of the linear leastsquares problem. The difference is that a multilinear operator is used in place of a matrix-vector product. The MLLS is typically a large-scale problem characterized by a large number of local minimizers. It originates, for instance, from the design of filter networks. We present a global search strategy that allows for moving from one local minimizer to a better one. The efficiency of this strategy is illustrated by results of numerical experiments performed for some problems related to the design of filter networks.

Ort, förlag, år, upplaga, sidor
Sultan Qaboos University , 2012. Vol. 17, nr 1, s. 12-21
Nyckelord [en]
Global optimization; Global search strategies; Multilinear least-squares; Filter
Nationell ämneskategori
Beräkningsmatematik Medicinsk bildbehandling
Identifikatorer
URN: urn:nbn:se:liu:diva-78918OAI: oai:DiVA.org:liu-78918DiVA, id: diva2:536888
Tillgänglig från: 2012-08-28 Skapad: 2012-06-25 Senast uppdaterad: 2015-09-03Bibliografiskt granskad
Ingår i avhandling
1. Large-Scale Optimization Methods with Application to Design of Filter Networks
Öppna denna publikation i ny flik eller fönster >>Large-Scale Optimization Methods with Application to Design of Filter Networks
2014 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Nowadays, large-scale optimization problems are among those most challenging. Any progress in developing methods for large-scale optimization results in solving important applied problems more effectively. Limited memory methods and trust-region methods represent two ecient approaches used for solving unconstrained optimization problems. A straightforward combination of them deteriorates the efficiency of the former approach, especially in the case of large-scale problems. For this reason, the limited memory methods are usually combined with a line search. We develop new limited memory trust-region algorithms for large-scale unconstrained optimization. They are competitive with the traditional limited memory line-search algorithms.

In this thesis, we consider applied optimization problems originating from the design of lter networks. Filter networks represent an ecient tool in medical image processing. It is based on replacing a set of dense multidimensional lters by a network of smaller sparse lters called sub-filters. This allows for improving image processing time, while maintaining image quality and the robustness of image processing.

Design of lter networks is a nontrivial procedure that involves three steps: 1) choosing the network structure, 2) choosing the sparsity pattern of each sub-filter and 3) optimizing the nonzero coecient values. So far, steps 1 and 2 were mainly based on the individual expertise of network designers and their intuition. Given a sparsity pattern, the choice of the coecients at stage 3 is related to solving a weighted nonlinear least-squares problem. Even in the case of sequentially connected lters, the resulting problem is of a multilinear least-squares (MLLS) type, which is a non-convex large-scale optimization problem. This is a very dicult global optimization problem that may have a large number of local minima, and each of them is singular and non-isolated. It is characterized by a large number of decision variables, especially for 3D and 4D lters.

We develop an effective global optimization approach to solving the MLLS problem that reduces signicantly the computational time. Furthermore, we  develop efficient methods for optimizing sparsity of individual sub-filters  in lter networks of a more general structure. This approach offers practitioners a means of nding a proper trade-o between the image processing quality and time. It allows also for improving the network structure, which makes automated some stages of designing lter networks.

Ort, förlag, år, upplaga, sidor
Linköping: Linköping University Electronic Press, 2014. s. 52
Serie
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1561
Nationell ämneskategori
Beräkningsmatematik
Identifikatorer
urn:nbn:se:liu:diva-103646 (URN)10.3384/diss.diva-103646 (DOI)978-91-7519-456-1 (ISBN)
Disputation
2014-02-26, Nobel (BL32), B-huset, Campus Valla, Linköping University, Linköping, 13:15 (Engelska)
Opponent
Handledare
Tillgänglig från: 2014-02-03 Skapad: 2014-01-21 Senast uppdaterad: 2019-11-19Bibliografiskt granskad

Open Access i DiVA

TR2011-17(157 kB)486 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 157 kBChecksumma SHA-512
f7c652da5c5666194458a339cb79c8faa6b3b14c060e7ba7506268467bdbbd0814caac8dd430c78e5c49a2c8529f011cb89ec48f10297d159d58ad6aad48b46c
Typ fulltextMimetyp application/pdf

Övriga länkar

Link to publication

Personposter BETA

Andersson, MatsBurdakov, OlegKnutsson, HansZikrin, Spartak

Sök vidare i DiVA

Av författaren/redaktören
Andersson, MatsBurdakov, OlegKnutsson, HansZikrin, Spartak
Av organisationen
Medicinsk informatikTekniska högskolanOptimeringsläraMatematik och tillämpad matematik
BeräkningsmatematikMedicinsk bildbehandling

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 486 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 1512 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf