liu.seSearch for publications in DiVA
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Regression density estimation with variational methods and stochastic approximation
National University of Singapore.
National University of Singapore.
Linköpings universitet, Institutionen för datavetenskap, Statistik. Linköpings universitet, Tekniska högskolan.
University of New South Wales, Sydney, Australia.
2012 (engelsk)Inngår i: Journal of Computational And Graphical Statistics, ISSN 1061-8600, E-ISSN 1537-2715, Vol. 21, nr 3, s. 797-820Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Regression density estimation is the problem of flexibly estimating a response distribution as a function of covariates. An important approach to regression density estimation uses finite mixture models and our article considers flexible mixtures of heteroscedastic regression (MHR) models where the response distribution is a normal mixture, with the component means, variances and mixture weights all varying as a function of covariates. Our article develops fast variational approximation methods for inference. Our motivation is that alternative computationally intensive MCMC methods for fitting mixture models are difficult to apply when it is desired to fit models repeatedly in exploratory analysis and model choice. Our article makes three contributions. First, a variational approximation for MHR models is described where the variational lower bound is in closed form. Second, the basic approximation can be improved by using stochastic approximation methods to perturb the initial solution to attain higher accuracy. Third, the advantages of our approach for model choice and evaluation compared to MCMC based approaches are illustrated. These advantages are particularly compelling for time series data where repeated refitting for one step ahead prediction in model choice and diagnostics and in rolling window computations is very common. Supplemental materials for the article are available online.

sted, utgiver, år, opplag, sider
Taylor & Francis, 2012. Vol. 21, nr 3, s. 797-820
Emneord [en]
Bayesian model selection, heteroscedasticity, mixtures of experts, stochastic approximation, variational approximation
HSV kategori
Identifikatorer
URN: urn:nbn:se:liu:diva-79583DOI: 10.1080/10618600.2012.679897ISI: 000308282000013OAI: oai:DiVA.org:liu-79583DiVA, id: diva2:543809
Merknad

funding agencies|Singapore Ministry of Education (MOE)|R-155-000-068-133|Singapore Delft Water Alliances (SDWA) tropical reservoir research program||Australian Research Council (ARC)|DP0988579|

Tilgjengelig fra: 2012-08-10 Laget: 2012-08-10 Sist oppdatert: 2017-12-07

Open Access i DiVA

fulltext(1741 kB)1370 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 1741 kBChecksum SHA-512
cd844c9c941cba20e528ad4209772f5fba8c1ed53cc2dbaab4e72827bfb65edee019745c2ad53fca5afa39ce223553bc1a596862f226acc5aa69e4c28accf9a4
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekst

Person

Villani, Mattias

Søk i DiVA

Av forfatter/redaktør
Villani, Mattias
Av organisasjonen
I samme tidsskrift
Journal of Computational And Graphical Statistics

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 1373 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 209 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf