liu.seSearch for publications in DiVA
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Assessment of the accuracy of MRI wall shear stress estimation using numerical simulations
Linköpings universitet, Institutionen för medicin och hälsa, Avdelningen för kardiovaskulär medicin. Linköpings universitet, Hälsouniversitetet.
Linköpings universitet, Institutionen för medicin och hälsa, Klinisk fysiologi. Linköpings universitet, Hälsouniversitetet. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV.
Linköpings universitet, Institutionen för medicin och hälsa, Klinisk fysiologi. Linköpings universitet, Hälsouniversitetet. Östergötlands Läns Landsting, Hjärt- och Medicincentrum, Fysiologiska kliniken US. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV.ORCID-id: 0000-0003-1395-8296
2012 (engelsk)Inngår i: Journal of Magnetic Resonance Imaging, ISSN 1053-1807, E-ISSN 1522-2586, Vol. 36, nr 1, s. 128-138Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Purpose: To investigate the accuracy of wall shear stress (WSS) estimation using MRI. Specifically, to investigate the impact of different parameters and if MRI WSS estimates are monotonically related to actual WSS. Materials and Methods: The accuracy of WSS estimation using methods based on phase-contrast (PC) MRI velocity mapping, Fourier velocity encoding (FVE) and intravoxel velocity standard deviation mapping were studied using numerical simulations. The influence of spatial resolution, velocity encoding, wall segmentation, and voxel location were investigated over a range of WSS values. Results: WSS estimates were found to be sensitive to parameter settings in general and spatial resolution in particular. All methods underestimated WSS, except for the FVE-based method, which instead was extremely sensitive to voxel position relative to the wall. Methods using PC-based WSS estimation with wall segmentation showed to be accurate for low WSS, but were sensitive to segmentation errors. Conclusion: Even in the absence of noise and for relatively simple velocity profiles, MRI WSS estimates cannot always be assumed to be linearly or even monotonically related to actual WSS. High WSS values cannot be resolved and the estimates depend on parameter setting. Nevertheless, distinguishing areas of low and moderate WSS may be feasible.

sted, utgiver, år, opplag, sider
Wiley-Blackwell , 2012. Vol. 36, nr 1, s. 128-138
Emneord [en]
wall shear stress; phase contrast magnetic resonance imaging; atherosclerosis; hemodynamics; Fourier velocity encoding; numerical simulations
HSV kategori
Identifikatorer
URN: urn:nbn:se:liu:diva-79790DOI: 10.1002/jmri.23610ISI: 000305185700011OAI: oai:DiVA.org:liu-79790DiVA, id: diva2:544996
Tilgjengelig fra: 2012-08-17 Laget: 2012-08-14 Sist oppdatert: 2017-12-07bibliografisk kontrollert
Inngår i avhandling
1. Fast and Accurate 4D Flow MRI for Cardiovascular Blood Flow Assessment
Åpne denne publikasjonen i ny fane eller vindu >>Fast and Accurate 4D Flow MRI for Cardiovascular Blood Flow Assessment
2013 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

The study of blood flow is essential in understanding the physiology and pathophysiology of the cardiovascular system. Small disturbances of the blood flow may over time evolve and contribute to cardiovascular pathology. While the blood flow in a healthy human appears to be predominately laminar, turbulent or transitional blood flow is thought to be involved in the pathogenesis of several cardiovascular diseases. Wall shear stress is the frictional force of blood on the vessel wall and has been linked to the pathogenesis of atherosclerosis and aneurysms. Despite the importance of hemodynamic factors, cardiovascular diagnostics largely relies on the indirect estimation of function based on morphological data.

Time-resolved three-dimensional (3D) phase-contrast magnetic resonance imaging (MRI), often referred to as 4D flow MRI, is a versatile and non-invasive tool for cardiovascular blood flow assessment. The use of 4D flow MRI permits estimation of flow volumes, pressure losses, wall shear stress, turbulence intensity and many other unique hemodynamic parameters. However, 4D flow MRI suffers from long scan times, sometimes over 40 minutes. Furthermore, the accuracy of the many different 4D flow MRI-based applications and estimates have not been thoroughly examined.

In this thesis, the accuracy of 4D flow MRI-based turbulence intensity mapping and wall shear stress estimation was investigated by using numerical simulations of MRI flow measurements. While the results from the turbulence intensity mapping agreed well with reference values from computational fluid dynamics data, the accuracy of the MRI-based wall shear stress estimates was found to be very sensitive to different parameters, especially to spatial resolution, and wall shear stress values over 5 N/m2 were not well resolved.

To reduce the scan time, a 4D flow MRI sequence using spiral k-space trajectories was implemented and validated in-vivo and in-vitro. The scan time of 4D flow MRI was reduced by more than two-fold compared to a conventional Cartesian acquisition already accelerated using SENSE factor 2, and the data quality was maintained. For a 4D flow scan of the human heart, the use of spiral k-space trajectories resulted in a scan time of around 13 min, compared to 30 min for the Cartesian acquisition. By combining parallel imaging and spiral trajectories, the total scan time of a 4D flow measurement of the entire heart may be further reduced. This scan time reduction may also be traded for higher spatial resolution.

Numerical simulation of 4D flow MRI may act as an important tool for future optimization and validation of the spiral 4D flow sequence. The scan-time reductions offered by the spiral k-space trajectories can help to cut costs, save time, reduce discomfort for the patient as well as to decrease the risk for motion artifacts. These benefits may facilitate an expanded clinical and investigative use of 4D flow MRI, including larger patient research studies.

sted, utgiver, år, opplag, sider
Linköping: Linköping University Electronic Press, 2013
Serie
Linköping University Medical Dissertations, ISSN 0345-0082 ; 1380
HSV kategori
Identifikatorer
urn:nbn:se:liu:diva-100146 (URN)10.3384/diss.diva-100146 (DOI)978-91-7519-506-3 (ISBN)
Disputas
2013-12-13, Berzeliussalen, Campus Valla, Linköpings universitet, Linköping, 09:00 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2013-11-07 Laget: 2013-10-29 Sist oppdatert: 2019-12-08bibliografisk kontrollert

Open Access i DiVA

fulltext(861 kB)846 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 861 kBChecksum SHA-512
a931e3085ba190782791275243187aa8ec705881c2c0ad0468d0e3d21549169611e86ead257fe9a5ea6ef2fb31f6ac9d97d1fbc3773aa9ae1601f18b0cd8593c
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekst

Personposter BETA

Petersson, SvenDyverfeldt, PetterEbbers, Tino

Søk i DiVA

Av forfatter/redaktør
Petersson, SvenDyverfeldt, PetterEbbers, Tino
Av organisasjonen
I samme tidsskrift
Journal of Magnetic Resonance Imaging

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 846 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 246 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf