liu.seSearch for publications in DiVA
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Statistical Parametric Mapping of fMRI data using Spectral Graph Wavelets
Linköpings universitet, Institutionen för medicinsk teknik, Medicinsk informatik. Linköpings universitet, Tekniska högskolan.
2012 (engelsk)Independent thesis Advanced level (degree of Master (Two Years)), 20 poäng / 30 hpOppgave
Abstract [en]

In typical statistical parametric mapping (SPM) of fMRI data, the functional data are pre-smoothed using a Gaussian kernel to reduce noise at the cost of losing spatial specificity. Wavelet approaches have been incorporated in such analysis by enabling an efficient representation of the underlying brain activity through spatial transformation of the original, un-smoothed data; a successful framework is the wavelet-based statistical parametric mapping (WSPM) which enables integrated wavelet processing and spatial statistical testing. However, in using the conventional wavelets, the functional data are considered to lie on a regular Euclidean space, which is far from reality, since the underlying signal lies within the complex, non rectangular domain of the cerebral cortex. Thus, using wavelets that function on more complex domains such as a graph holds promise. The aim of the current project has been to integrate a recently developed spectral graph wavelet transform as an advanced transformation for fMRI brain data into the WSPM framework. We introduce the design of suitable weighted and un-weighted graphs which are defined based on the convoluted structure of the cerebral cortex. An optimal design of spatially localized spectral graph wavelet frames suitable for the designed large scale graphs is introduced. We have evaluated the proposed graph approach for fMRI analysis on both simulated as well as real data. The results show a superior performance in detecting fine structured, spatially localized activation maps compared to the use of conventional wavelets, as well as normal SPM. The approach is implemented in an SPM compatible manner, and is included as an extension to the WSPM toolbox for SPM.

sted, utgiver, år, opplag, sider
2012. , s. 54
Emneord [en]
Statistical parametric mapping, fMRI, Spectral graph theory, Graph wavelet transform, Wavelet thresholding
HSV kategori
Identifikatorer
URN: urn:nbn:se:liu:diva-81143ISRN: LiTH-IMT/MASTER-EX--12/018--SEOAI: oai:DiVA.org:liu-81143DiVA, id: diva2:550844
Eksternt samarbeid
École Polytechnique Fédérale de Lausanne (EPFL)
Fag / kurs
Master's Program Biomedical Engineering
Uppsök
Technology
Veileder
Examiner
Tilgjengelig fra: 2012-09-10 Laget: 2012-09-08 Sist oppdatert: 2012-09-19bibliografisk kontrollert

Open Access i DiVA

Hamid-Behjat-Master-Thesis(2005 kB)804 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 2005 kBChecksum SHA-512
6f3fa2678b7341b445213a418b811de76ddd108cc889fd3e29b16d9814d8c8c258b1adb0e6f65fa9a2eba7c3507005a785b318b2f2173f1f4d8064552530a717
Type fulltextMimetype application/pdf

Søk i DiVA

Av forfatter/redaktør
Behjat, Hamid
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 804 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 712 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf