liu.seSök publikationer i DiVA
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Time resolved three-dimensional segmentation of the left ventricle in multimodality cardiac imaging
Linköpings universitet, Institutionen för medicin och vård, Centrum för medicinsk bildvetenskap och visualisering. Linköpings universitet, Hälsouniversitetet.
Linköpings universitet, Institutionen för medicin och vård, Centrum för medicinsk bildvetenskap och visualisering. Linköpings universitet, Hälsouniversitetet.
Department of Clinical Physiology, Lund University, Sweden.
Department of Medicine/Cardiology, University of California, San Francisco, USA.
Visa övriga samt affilieringar
(Engelska)Manuskript (preprint) (Övrigt vetenskapligt)
Abstract [en]

We propose a robust approach for multimodality segmentation of the cardiac left ventricle. The method is based on the concept of deformable models, but extended with an enhanced and fast edge detection scheme that includes temporal information, and anatomical a priori information. The algorithm is implemented with a fast numeric scheme for solving energy minimization, and efficient filter nets for fast edge detection. This allows clinically applicable time for a whole time resolved 3D cardiac data set to be acheived on a standard desktop computer. The algorithm is validated on images acquired using MRI Gradient echo, MRl (SSFP) images, and Cardiac CT, and tested for feasibility with three other imaging modalities, including gated blood pool SPECT, echocardiography and late enhancement MRL.

Nyckelord [en]
Image Segmentation, Deformable models, Left Ventricle, 3D, time resolved, edge detection
Nationell ämneskategori
Medicin och hälsovetenskap
Identifikatorer
URN: urn:nbn:se:liu:diva-86175OAI: oai:DiVA.org:liu-86175DiVA, id: diva2:575355
Tillgänglig från: 2012-12-10 Skapad: 2012-12-10 Senast uppdaterad: 2016-03-14
Ingår i avhandling
1. Automated feature detection in multidimensional images
Öppna denna publikation i ny flik eller fönster >>Automated feature detection in multidimensional images
2005 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Manual identification of structures and features in multidimensional images is at best time consuming and operator dependent. Feature identification need to be accurate, repeatable and quantitative.

This thesis presents novel methods for automated feature detection in multidimensional images that are independent on imaging modality. Feature detection is described at two abstraction levels. At the first low level the image is regionally processed to find local or regional features. In the second medium level results are taken from the low level feature detection and grouped into objects or parts that can be quantified. A key to quantification of cardiac function is delineation of the cardiac walls which is a difficult task. Two different methods are described and evaluated for delineation of the left ventricular wall from anatomical images. The results show that semi-automatic delineation is a huge time saver compared to manual delineation. To obtain a robust results as much a priori and image information as possible should be used in the delineation process. Regional cardiac wall function is further studied by deriving and analyzing strain-rate tensors from velocity encoded images. For flow encoded images novel methods to find regional flow structures such as vortex cores, flow based delineation, and flow quantification are proposed. These methods are applied to study blood flow in the human heart, but the techniques outlined are general and can be applied to a wide array of flow conditions.

Ort, förlag, år, upplaga, sidor
Linköping: Linköping University Electronic Press, 2005. s. 70
Serie
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 917
Nationell ämneskategori
Medicin och hälsovetenskap
Identifikatorer
urn:nbn:se:liu:diva-29497 (URN)14852 (Lokalt ID)91-85297-10-0 (ISBN)14852 (Arkivnummer)14852 (OAI)
Disputation
2005-04-15, Elsa Brändströmsalen, Campus US, Linköpings Universitet, Linköping, 13:00 (Engelska)
Opponent
Tillgänglig från: 2009-10-09 Skapad: 2009-10-09 Senast uppdaterad: 2012-12-10Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Personposter BETA

Heiberg, EinarWigström, LarsKarlsson, Matts

Sök vidare i DiVA

Av författaren/redaktören
Heiberg, EinarWigström, LarsKarlsson, Matts
Av organisationen
Centrum för medicinsk bildvetenskap och visualiseringHälsouniversitetetInstitutionen för medicinsk teknik
Medicin och hälsovetenskap

Sök vidare utanför DiVA

GoogleGoogle Scholar

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 190 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf