liu.seSök publikationer i DiVA
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
On force control for assembly and deburring of castings
Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Industriell Produktion. Linköpings universitet, Tekniska högskolan.
Department of Automatic Control, Lund University, Lund, Sweden .
Department of Automatic Control, Lund University, Lund, Sweden .
Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Industriell Produktion. Linköpings universitet, Tekniska högskolan.
Visa övriga samt affilieringar
2013 (Engelska)Ingår i: Production Engineering, ISSN 0944-6524, Vol. 7, nr 4, s. 351-360Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Traditional industrial robots have problems interacting with an uncalibrated, ill-dened environment where part geometry and position may vary. Active force control technology has therefore been suggested as a solution to add the extra sensory dimension needed to handle manufacturing tasks like assembly and deburring. The technology is proposed to give increased exibility compared to other solutions and force control systems are available commercially. Active force control installations however, are is still uncommon in industry. This paper presents two cases of force control applications; assembly of a compliant carbon ber structure and deburring/cleaning of iron castings. Based on these two cases, some issues are raised on how the technology can be further developed to t the industrial setting, and the proposed benets are re-examined and refined. The two cases show that programming, parameter setting and ease of use are critical components in lowering the industrial threshold, together with increased possibilities of application-specic compensation and filtering. Force control does however, show great potential in increasing the boundaries for variance in product and equipment like grippers and xtures as well as decreasing the need for calibration of for example virtual models used for programming compared to traditional automated solutions.

Ort, förlag, år, upplaga, sidor
Springer, 2013. Vol. 7, nr 4, s. 351-360
Nyckelord [en]
Industrial robotics Machining Debur- ring Force Control Assembly
Nationell ämneskategori
Teknik och teknologier
Identifikatorer
URN: urn:nbn:se:liu:diva-88174DOI: 10.1007/s11740-013-0459-1OAI: oai:DiVA.org:liu-88174DiVA, id: diva2:601921
Tillgänglig från: 2013-01-30 Skapad: 2013-01-30 Senast uppdaterad: 2014-02-24Bibliografiskt granskad
Ingår i avhandling
1. On Manufacturing Technology as an Enabler of Flexibility: Affordable Reconfigurable Tooling and Force-Controlled Robotics
Öppna denna publikation i ny flik eller fönster >>On Manufacturing Technology as an Enabler of Flexibility: Affordable Reconfigurable Tooling and Force-Controlled Robotics
2013 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

In order to survive in today’s global market many manufacturing companies seek flexibility to reduce product lead times and meet changing market demands. Manufacturing equipment forms the base of the production system and manufacturing technology with the capability to adapt to any changes in prerequisites is thus a key enabler of flexibility. Industrial robots and fixtures are common in all types of manufacturing. Robots are versatile re-programmable units capable of performing many tasks, such as welding, part transfer, etc. Industrial robots have traditionally been unable to handle disturbances and lack of constraints of input. This has led to manual operations often being preferred to automation when some level of flexibility is needed. One way to enhance manufacturing equipment’s capability to handle unknown events is to integrate different kinds of sensors to gain more knowledge of the manufacturing environment. Force sensors, for example, can be used to close the feedback loop and, together with an adequate control system, enable the robot to react to force stimuli. This is useful in manufacturing applications like assembly and deburring, which have previously been difficult to automate.

Fixtures are devices that hold and position parts during a manufacturing process. Traditionally many fixtures have been dedicated, i.e. designed for a specific part and purpose. This means that fixtures have not been able to handle different products in the same unit, thus hindering flexibility. Sensors, like measurement systems, can be used together with fixtures to de-couple the structure of the fixture from the accuracy, which is the traditional approach to fixturing. This reasoning forms the base of the Affordable Reconfigurable Tooling (ART) concept, developed at Linköping University. The ART concept aims at increasing flexibility in manufacturing, while ensuring affordability and efficiency.

This thesis explores how common manufacturing equipment, like industrial robots and fixtures, combined with sensor input, can enhance flexibility in manufacturing. The research shows that force-controlled robots, reacting to force stimuli, produce consistent results in assembly of compliant structures and in complex deburring. Force control also makes the system more robust, as it is able to handle variance in the assembled and deburred parts which adds to system flexibility. It also lessens the need for accuracy in other equipment used, such as grippers and fixtures, and makes programming easier and safer. Force control would, however, benefit if parameter tuning was simplified in order to fit an industrial environment and if presented user information is tailored for the intended user.

Using measurement sensors to build fixtures, new ART devices aimed at increased flexibility in fixtures have been developed. These devices reduce the resources needed for fixture build and reconfiguring between products and also open up for making fixtures more active in manufacturing and similar to robots, while still being affordable. ART also reduces resources needed for design, as shown by the developed design aid programs. ART also supports concurrent design, as fixture specifications may be finalized before the product specifications are fully set.

The overall results indicate that the explored sensors in combination with today’s emerging technologies can give additional benefits for applications like assembly and deburring and for fixtures. Furthermore, it is shown that it is possible to increase flexibility on different levels in a manufacturing system by using sensors in combination with industrial robots and fixtures.

Abstract [en]

För att överleva och växa på dagens globala arena försöker många tillverkande företag vara flexibla, och korta sin produktutveckling och sina ledtider för att på så sätt snabbare kunna möta marknadens krav. Den utrustning som används i produktionen lägger grunden för hur enkelt systemet kan anpassa sig till förändringar vilket gör att den teknik som används för tillverkningen är en viktig byggsten för att möjliggöra flexibilitetet.

Industrirobotar och fixturer är vanliga typer av utrustning som används för tillverkning. Industrirobotar är mångsidiga, omprogrammeringsbara enheter och kan till exempel användas för svetsning, förflyttning av gods etc. De har traditionellt sett haft svårt att hantera avvikelser vilket har gjort att höga krav ställts på inkommande material och omgivande utrustning. Detta har i sin tur lett till att om ett visst mått av flexibilitet krävts, så har manuell arbetskraft föredragits framför robotar. Ett sätt att öka förmågan att hantera relativt ”okända” miljöer är att integrera sensorer med produktionsutrustning, för att på så sätt få information om tillverkningens förutsättningar. Kraftsensorer tillsammans med kontrolllogik, gör det möjligt för en robot att reagera på kraft. Detta är användbart om roboten skall användas för avgradning och slipning, eller för montering, tillverkningstyper som annars har varit svåra att automatisera.

Fixturer är enheter som håller en produkt i önskat läge under tillverkningsprocessen. En fixtur har traditionellt konstruerats för att passa en produkt och en process. De har således inte kunnat användas t.ex. för olika produkt-typer eller när produkter förändrats på något sätt, vilket har påverkat systemets flexibilitet negativt. Sensorer, som t.ex. olika mätsystem kan användas för att frikoppla en fixturs struktur från dess interna noggrannhetskedja, något som annars är ett vanligt sätt att uppnå önskad noggrannhet i fixturen. Det tidigare utvecklade ART konceptet (Affordable Reconfigurable Tooling ungefär Kostnadseffektiva Rekonfigurerbara Verktyg) bygger på denna princip. ART fokuserar på att öka flexibiliteten för fixturer samtidigt som de fortfarande är resurseffektiva.

Denna avhandling behandlar hur vanligt förekommande produktionsutrustning, såsom robotar och fixturer, kan kombineras med sensorer för att uppnå ökad flexibilitet i tillverkning. Den genomförda forskningen visar att kraftstyrda robotar möjliggör ett bra och jämt resultat vid montering av icke formstabila strukturer/komponenter och vid komplicerad slipning/gradning av gjutgods. Kraftstyrningen gör att systemet klarar av att hantera variation hos de bearbetade/monterade detaljerna. Den minskar också behovet av noggrannhet hos omgivande utrustning, såsom fixturer och gripdon, och både förenklar och ökar säkerheten vid programmering jämfört med traditionella metoder. För att passa de industriella förutsättningarna skulle dock parameterinställning och användarvänlighet behöva utvecklas ytterligare.

Genom att använda mätsystem tillsammans med fixturer har nya fixturenheter till ART utvecklats. Dessa enheter minskar resursåtgången vid sammanbyggnad och omkonstruktion av fixturer. De öppnar även för att aktiva fixturer som är mer lika robotar, men som fortfarande är kostnadseffektiva. ART påverkar också design av fixturer positivt, eftersom stödjande mjukvaruverktyg för design kan tas fram.

Det övergripande resultatet tyder på att de använda sensorerna tillsammans med nydanande teknik ger mervärde i applikationer som montering och slipning. Vidare så visar forskningen att det är möjligt att öka flexibiliteten på flera nivåer i tillverkningssystemet med sensorer i kombination med industrirobotik och fixturer.

Ort, förlag, år, upplaga, sidor
Linköping: Linköping University Electronic Press, 2013. s. 118
Serie
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1501
Nationell ämneskategori
Teknik och teknologier
Identifikatorer
urn:nbn:se:liu:diva-88177 (URN)978-91-7519-691-6 (ISBN)
Disputation
2013-02-22, Planck, Fysikhuset, Campus Valla, Linköpings universitet, Linköping, 10:15 (Svenska)
Opponent
Handledare
Tillgänglig från: 2013-01-30 Skapad: 2013-01-30 Senast uppdaterad: 2019-12-03Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Personposter BETA

Jonsson, Marievon Gegerfelt, Sebastian

Sök vidare i DiVA

Av författaren/redaktören
Jonsson, Marievon Gegerfelt, Sebastian
Av organisationen
Industriell ProduktionTekniska högskolan
Teknik och teknologier

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 336 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf