liu.seSök publikationer i DiVA
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Fully automatic measurements of axial vertebral rotation for assessment of spinal deformity in idiopathic scoliosis
Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV. Linköpings universitet, Institutionen för medicinsk teknik, Medicinsk informatik. Linköpings universitet, Tekniska högskolan.ORCID-id: 0000-0003-0908-9470
Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV. Linköpings universitet, Institutionen för teknik och naturvetenskap, Medie- och Informationsteknik. Linköpings universitet, Tekniska högskolan.ORCID-id: 0000-0002-9368-0177
Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV. Linköpings universitet, Institutionen för medicinsk teknik, Medicinsk informatik. Linköpings universitet, Tekniska högskolan.
Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV. Linköpings universitet, Institutionen för klinisk och experimentell medicin, Neurokirurgi. Linköpings universitet, Hälsouniversitetet. Östergötlands Läns Landsting, Centrum för kirurgi, ortopedi och cancervård, Ortopedkliniken i Linköping.
Visa övriga samt affilieringar
2013 (Engelska)Ingår i: Physics in Medicine and Biology, ISSN 0031-9155, E-ISSN 1361-6560, Vol. 58, nr 6, s. 1775-1787Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Reliable measurements of spinal deformities in idiopathic scoliosis are vital, since they are used for assessing the degree of scoliosis, deciding upon treatment and monitoring the progression of the disease. However, commonly used two dimensional methods (e.g. the Cobb angle) do not fully capture the three dimensional deformity at hand in scoliosis, of which axial vertebral rotation (AVR) is considered to be of great importance. There are manual methods for measuring the AVR, but they are often time-consuming and related with a high intra- and inter-observer variability. In this paper, we present a fully automatic method for estimating the AVR in images from computed tomography. The proposed method is evaluated on four scoliotic patients with 17 vertebrae each and compared with manual measurements performed by three observers using the standard method by Aaro-Dahlborn. The comparison shows that the difference in measured AVR between automatic and manual measurements are on the same level as the inter-observer difference. This is further supported by a high intraclass correlation coefficient (0.971-0.979), obtained when comparing the automatic measurements with the manual measurements of each observer. Hence, the provided results and the computational performance, only requiring approximately 10 to 15 s for processing an entire volume, demonstrate the potential clinical value of the proposed method.

Ort, förlag, år, upplaga, sidor
Institute of Physics (IOP), 2013. Vol. 58, nr 6, s. 1775-1787
Nationell ämneskategori
Medicinsk bildbehandling Ortopedi
Identifikatorer
URN: urn:nbn:se:liu:diva-89619DOI: 10.1088/0031-9155/58/6/1775ISI: 000315735400007OAI: oai:DiVA.org:liu-89619DiVA, id: diva2:608527
Forskningsfinansiär
Stiftelsen för strategisk forskning (SSF), SM10-0022Tillgänglig från: 2013-02-28 Skapad: 2013-02-28 Senast uppdaterad: 2018-01-11
Ingår i avhandling
1. Robust Image Registration for Improved Clinical Efficiency: Using Local Structure Analysis and Model-Based Processing
Öppna denna publikation i ny flik eller fönster >>Robust Image Registration for Improved Clinical Efficiency: Using Local Structure Analysis and Model-Based Processing
2013 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Medical imaging plays an increasingly important role in modern healthcare. In medical imaging, it is often relevant to relate different images to each other, something which can prove challenging, since there rarely exists a pre-defined mapping between the pixels in different images. Hence, there is a need to find such a mapping/transformation, a procedure known as image registration. Over the years, image registration has been proved useful in a number of clinical situations. Despite this, current use of image registration in clinical practice is rather limited, typically only used for image fusion. The limited use is, to a large extent, caused by excessive computation times, lack of established validation methods/metrics and a general skepticism toward the trustworthiness of the estimated transformations in deformable image registration.

This thesis aims to overcome some of the issues limiting the use of image registration, by proposing a set of technical contributions and two clinical applications targeted at improved clinical efficiency. The contributions are made in the context of a generic framework for non-parametric image registration and using an image registration method known as the Morphon. 

In image registration, regularization of the estimated transformation forms an integral part in controlling the registration process, and in this thesis, two regularizers are proposed and their applicability demonstrated. Although the regularizers are similar in that they rely on local structure analysis, they differ in regard to implementation, where one is implemented as applying a set of filter kernels, and where the other is implemented as solving a global optimization problem. Furthermore, it is proposed to use a set of quadrature filters with parallel scales when estimating the phase-difference, driving the registration. A proposal that brings both accuracy and robustness to the registration process, as shown on a set of challenging image sequences. Computational complexity, in general, is addressed by porting the employed Morphon algorithm to the GPU, by which a performance improvement of 38-44x is achieved, when compared to a single-threaded CPU implementation.

The suggested clinical applications are based upon the concept paint on priors, which was formulated in conjunction with the initial presentation of the Morphon, and which denotes the notion of assigning a model a set of properties (local operators), guiding the registration process. In this thesis, this is taken one step further, in which properties of a model are assigned to the patient data after completed registration. Based upon this, an application using the concept of anatomical transfer functions is presented, in which different organs can be visualized with separate transfer functions. This has been implemented for both 2D slice visualization and 3D volume rendering. A second application is proposed, in which landmarks, relevant for determining various measures describing the anatomy, are transferred to the patient data. In particular, this is applied to idiopathic scoliosis and used to obtain various measures relevant for assessing spinal deformity. In addition, a data analysis scheme is proposed, useful for quantifying the linear dependence between the different measures used to describe spinal deformities.

Ort, förlag, år, upplaga, sidor
Linköping: Linköping University Electronic Press, 2013. s. 120
Serie
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1514
Nyckelord
Image registration, deformable models, scoliosis, visualization, volume rendering, adaptive regularization, GPGPU, CUDA
Nationell ämneskategori
Medicinsk bildbehandling
Identifikatorer
urn:nbn:se:liu:diva-91116 (URN)978-91-7519-637-4 (ISBN)
Disputation
2013-05-31, Eken, Campus US, Linköping University, Linköping, 09:15 (Engelska)
Opponent
Handledare
Forskningsfinansiär
Vetenskapsrådet, 2007-4786
Tillgänglig från: 2013-05-08 Skapad: 2013-04-17 Senast uppdaterad: 2019-12-03Bibliografiskt granskad

Open Access i DiVA

fulltext(1037 kB)1570 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 1037 kBChecksumma SHA-512
07b522907f81914e3b5633b017a126e635ae5274445b40fa6bdf1499bd1768d207e3b5e947e84351b07a4bf546f12531f1a98856c5ed23992c79794c1d0fc0a6
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltext

Personposter BETA

Forsberg, DanielLundström, ClaesAndersson, MatsVavruch, LudvigTropp, HansKnutsson, Hans

Sök vidare i DiVA

Av författaren/redaktören
Forsberg, DanielLundström, ClaesAndersson, MatsVavruch, LudvigTropp, HansKnutsson, Hans
Av organisationen
Centrum för medicinsk bildvetenskap och visualisering, CMIVMedicinsk informatikTekniska högskolanMedie- och InformationsteknikNeurokirurgiHälsouniversitetetOrtopedkliniken i LinköpingOrtopedi
I samma tidskrift
Physics in Medicine and Biology
Medicinsk bildbehandlingOrtopedi

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 1570 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 1258 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf