liu.seSearch for publications in DiVA
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Effect of Local vs. Systemic Bisphosphonate Delivery on Dental Implant Fixation in a Model of Osteonecrosis of the Jaw
Linköpings universitet, Institutionen för klinisk och experimentell medicin, Ortopedi. Linköpings universitet, Hälsouniversitetet. Östergötlands Läns Landsting, Sinnescentrum, Käkkliniken US.
Linköpings universitet, Institutionen för klinisk och experimentell medicin, Ortopedi. Linköpings universitet, Hälsouniversitetet.
Linköpings universitet, Institutionen för klinisk och experimentell medicin, Ortopedi. Linköpings universitet, Hälsouniversitetet.
Linköpings universitet, Institutionen för klinisk och experimentell medicin, Ortopedi. Linköpings universitet, Hälsouniversitetet. Östergötlands Läns Landsting, Centrum för kirurgi, ortopedi och cancervård, Ortopedkliniken i Linköping.
2013 (engelsk)Inngår i: Journal of Dental Research, ISSN 0022-0345, E-ISSN 1544-0591, Vol. 92, nr 3, s. 279-283Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Locally applied bisphosphonates may improve the fixation of metal implants in bone. However, systemic bisphosphonate treatment is associated with a risk of osteonecrosis of the jaw (ONJ). We hypothesized that local delivery of bisphosphonate from the implant surface improves the fixation of dental implants without complications in a setting where systemic treatment induces ONJ. Forty rats were randomly allocated to 4 groups of 10. All groups received a titanium implant inserted in an extraction socket. Group I received the implants only. Group II received dexamethasone (0.5 mg/kg). Group III received dexamethasone as above plus alendronate (200 µg/kg). Group IV received zoledronate-coated implants and dexamethasone as above. The animals were sacrificed 2 weeks after tooth extraction. All 10 animals with systemic alendronate treatment developed large ONJ-like changes, while all with local treatment were completely healed. Implant removal torque was higher for the bisphosphonate-coated implants compared with the other groups (p < 0.03 for each comparison). Micro-computed tomography of the maxilla showed more bone loss in the systemic alendronate group compared with groups receiving local treatment (p = 0.001). Local bisphosphonate treatment appears to improve implant fixation in a setting where systemic treatment caused ONJ.

sted, utgiver, år, opplag, sider
Sage Publications, 2013. Vol. 92, nr 3, s. 279-283
HSV kategori
Identifikatorer
URN: urn:nbn:se:liu:diva-89667DOI: 10.1177/0022034512472335ISI: 000314914100013PubMedID: 23264610OAI: oai:DiVA.org:liu-89667DiVA, id: diva2:608743
Tilgjengelig fra: 2013-03-01 Laget: 2013-03-01 Sist oppdatert: 2017-12-06bibliografisk kontrollert
Inngår i avhandling
1. Bisphosphonates and implants in the jaw bone
Åpne denne publikasjonen i ny fane eller vindu >>Bisphosphonates and implants in the jaw bone
2013 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Insertion of metal implants in bone is one of the commonest of all surgical procedures. The success of these operations is dependent on the fixation of the implants, which, in turn, depends on the strength of the bone that holds them. If the quality of the bone holding the implant could be improved locally, surgical procedures would become simpler and rehabilitation would become faster. Bisphosphonates are anti-resorptive drugs that act specifically on osteoclasts, thereby maintaining bone density and strength. Once released from the surface of a coated implant, bisphosphonates reduce osteoclast activity, thereby changing the balance of bone turnover in favor of bone formation, leading to a net gain in local bone density. During the last decades, the effects of bisphosphonate treatment on the stability of implants have been tested in several clinical and animal studies, but not in human jaws. This may be because it has been suggested that there is a link between the use of bisphosphonates (especially those given intravenously) and a condition called osteonecrosis of the jaw (ONJ). The pathophysiology and treatment of ONJ is controversial. The difficulty in treating ONJ has highlighted the importance of prevention.

The overall aim of the present thesis was to evaluate the effect of local and systemic use of bisphosphonates on bone tissue. Could a thin, bisphosphonate-eluting fibrinogen coating improve the fixation of metal implants in the human jaw? Would it be possible to reproduce ONJ and prevent the development of this condition in an animal model?

In two clinical studies, a total number of 96 implants were inserted in 21 patients. In a randomized trial with a paired design, one implant in each pair was coated with a thin fibrinogen layer containing two bisphosphonates (pamidronate and ibandronate). The bisphosphonate-coated implants showed better stability as measured by resonancefrequency analysis. Radiographic intraoral films also showed less bone loss. Three animal models were developed. In a study comparing local and systemic effects of bisphosphonates, zoledronate-coated screws inserted in rats showed better fixation in spite of a drug treatment that is known to induce ONJ-like lesions when given systemically. In another rat model, ONJ-like lesions were reproducibly induced at sites of tooth extraction whereas there were no signs of bone cell death in uninjured sites. Finally, rat experiments showed that the development of ONJ-like lesions after tooth extraction could be prevented by early mucoperiosteal coverage.

In conclusion, a thin, bisphosphonate-eluting fibrinogen coating can improve the fixation of dental implants in human bone. This may lead to new possibilities in orthopaedic surgery and dentistry. The pathophysiology of ONJ is strongly linked to bone exposure in combination with drugs that reduce resorption.

sted, utgiver, år, opplag, sider
Linköping: Linköping University Electronic Press, 2013. s. 144
Serie
Linköping University Medical Dissertations, ISSN 0345-0082 ; 1348
HSV kategori
Identifikatorer
urn:nbn:se:liu:diva-89669 (URN)978-91-7519-724-1 (ISBN)
Disputas
2013-03-22, Berzeliussalen, hälsouniversitetet, Campus US, Linköpings universitet, Linköping, 09:00 (svensk)
Opponent
Veileder
Tilgjengelig fra: 2013-03-01 Laget: 2013-03-01 Sist oppdatert: 2019-12-08bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstPubMed

Personposter BETA

Abtahi, JahanAgholme, FredrikSandberg, OlofAspenberg, Per

Søk i DiVA

Av forfatter/redaktør
Abtahi, JahanAgholme, FredrikSandberg, OlofAspenberg, Per
Av organisasjonen
I samme tidsskrift
Journal of Dental Research

Søk utenfor DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 696 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf