liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Effects of cathode grain size and substrate fixturing on the microstructure evolution of arc evaporated Cr-cathodes and Cr-N coating synthesis
Linköping University, Department of Physics, Chemistry and Biology, Nanostructured Materials. Linköping University, The Institute of Technology.
Linköping University, Department of Physics, Chemistry and Biology, Nanostructured Materials. Linköping University, The Institute of Technology.
PLANSEE Composite Materials GmbH, Germany.
Ionbond Sweden AB, Linköping, Swedeb.
Show others and affiliations
2014 (English)In: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films, ISSN 0734-2101, E-ISSN 1520-8559, Vol. 32, no 2, p. 021515-Article in journal (Refereed) Published
Abstract [en]

The influence of the cathode grain size and the substrate fixturing on the microstructure evolution of the Cr cathodes and the resulting Cr-N coating synthesis is studied. Hot isostatic pressed Cr cathodes with three different grain sizes were arc evaporated in a nitrogen atmosphere and Cr-N coatings were deposited on cemented carbide substrate at 2 and 4 Pa nitrogen pressure, respectively. The Cr cathodes before and after arc discharging are composed of polycrystalline α-Cr regardless of the grain size. A converted layer forms on the Cr cathode surface and its microstructure differs with the cathode grain size. A stationary substrate fixturing results in ditches covering the cathode surface while a single rotating fixturing does not. The increased grain size of the virgin Cr cathodes enhances the quantities of the ditches. The possible causes are addressed. At 2 Pa nitrogen pressure, the Cr-N coatings deposited with the single rotating fixturing comprise only cubic CrN phase while the ones deposited with the stationary fixturing contain a mixture of hexagonal Cr2N and cubic CrN phases. By the increasing grain size of the Cr cathode, the droplet density of the Cr-N coatings increase somewhat while the hardness decreases for the Cr-N coatings deposited with stationary fixturing at 2 Pa nitrogen pressure.

Place, publisher, year, edition, pages
2014. Vol. 32, no 2, p. 021515-
Keywords [en]
Cathodic arc deposition, cathode surface evolution, substrate fixturing, wormlike ditches, grain size
National Category
Materials Engineering
Identifiers
URN: urn:nbn:se:liu:diva-96789DOI: 10.1116/1.4865923ISI: 000335964200056OAI: oai:DiVA.org:liu-96789DiVA, id: diva2:643345
Available from: 2013-08-27 Created: 2013-08-27 Last updated: 2019-11-21Bibliographically approved
In thesis
1. Microstructure evolution of Ti-based and Cr cathodes during arc discharging and its impact on coating growth
Open this publication in new window or tab >>Microstructure evolution of Ti-based and Cr cathodes during arc discharging and its impact on coating growth
2013 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis explores the microstructure evolution of cathodes with various material compositions and grain sizes during cathodic arc evaporation processes as well as the impact on the arc movement, and the microstructure and properties of the deposited nitride coatings. The studied cathode material systems include conventionally metal forged Ti and Ti -Si cathodes, novel Ti3SiC2 MAX-phase cathodes, and dedicatedly designed powder-metallurgical Ti-Si and Cr cathodes with different grain size. The microstructure and chemical composition of the virgin and arced cathodes together with the microstructure and mechanical properties of the deposited coatings were analyzed with various characterization techniques, including x-ray diffractometry, x-ray photoelectron spectroscopy, elastic recoil detection analysis, scanning electron microscopy, focused ion beam sample preparation technique, transmission electron microscopy, energy dispersive x-ray, electron energy loss spectroscopy, and nanoindentation.

In general, a converted layer forms on the cathode surfaces during cathodic arc evaporation. The thickness, the microstructure and the chemical composition of such layer are dependent on the composition and the grain size of the virgin cathodes, the nitrogen pressure, and the cathode fabrication methods.

For Ti based materials, the converted layer is 5-12 μm thick and consists of nanosized nitrided grains caused by the high reactivity of Ti to the ambient nitrogen gas. In comparison, the Cr cathode is covered with a 10-15 μm converted layer with micrometer/sub-micrometer sized grains. Only very limited amounts of nitrogen are detected within the layer due to the low reactivity of Cr to nitrogen.

For Ti-Si cathodes, the existence of multiple phases of Ti and Ti5Si3 with different work function renders preferential arc erosion on the Ti5Si3 phase during discharging. The preferential erosion generates higher roughness of the Ti-Si cathode surface compared with Ti. By increasing the grain size of the virgin Ti-Si cathodes from ~8 μm to ~620 μm, the average roughness  increases from 1.94±0.13 μm to 91±14 μm due to the amplified impact of preferential erosion of the enlarged Ti5Si3 grains. The variation of the preferential erosion affects the arc movement, the deposition rate, and the macroparticle distribution of the deposited Ti-Si-N coatings.

A novel Ti3SiC2 MAX phase is used as cathode material for the growth of Ti-Si-C-N coating. During arcing, the cathode surface forms a converted layer with two sublayers, consisting of a several-micrometer region with a molten and resolidified microstructure followed by a region with a decomposed microstructure. The microstructure and hardness of the deposited Ti -Si-C-N coatings is highly dependent on the wide range of coating compositions attained. In the coatings with abundance of N, the combined presence of Si and C strongly disturbs cubic phase growth and compromises their mechanical strength. At a nitrogen pressure of 0.25-0.5 Pa, 45-50 GPa superhard (Ti,Si)(C,N) coatings with a nanocrystalline feathered structure were obtained.

By increasing the grain size of the elemental Cr cathodes from ~10 μm and ~300 μm, the grain structure of the converted layer on the cathode surface varies from equiaxed grains to laminated grains after evaporating in a nitrogen atmosphere. When evaporated with a stationary fixture, the worn Cr cathode surface contains an organized pattern of deep ditches in the surface. The formation of such patterns is enhanced by increasing the cathode grain size. The fixture movement, which is either stationary or single rotating, affects the phase composition, the droplet density and the microstructure of the deposited Cr-N coatings, which consequently determines the mechanical properties of the coatings.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2013. p. 55
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1537
National Category
Natural Sciences
Identifiers
urn:nbn:se:liu:diva-96790 (URN)978-91-7519-539-1 (ISBN)
Public defence
2013-09-20, Planck, Fysikhuset, Campus Valla, Linköpings universitet, Linköping, 10:15 (English)
Opponent
Supervisors
Available from: 2013-08-27 Created: 2013-08-27 Last updated: 2019-12-03Bibliographically approved
2. Cathodic arc deposition process
Open this publication in new window or tab >>Cathodic arc deposition process
2019 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis aims to expand the knowledge of fundamental mechanisms that govern the cathodic arc process. The first part of this thesis explores and explains the correlations between a rather unexplored process parameter (i.e. cathode microstructure) and the microstructure of the coatings. The second part of the thesis focuses on discovering and explaining the correlations between process parameters (i.e. arc guiding magnetic field and nitrogen pressure), plasma properties (i.e. plasma density, electron temperature, ion saturation density etc.), and the microstructure of the coatings.

Two aspects of the cathode microstructure are explored. The first is the cathode grain size and the second is the disparity among parent phases of the cathode in terms of work function (W.F.) and cohesive energy (C.E.).

Two material systems are selected to investigate the effects of the cathode grain size on the microstructure of the coatings. In this research evolution of the microstructure of the cathode surface under the influence of arc has also been studied. The results show that for CrN coatings a decrease in average grain size of Cr cathode is beneficial in terms of reduction in macroparticle density of Cr-N coatings. In the case of powder metallurgically prepared Ti-50 at.% Al cathodes, a decrease in grain size from 1800 μm to 100 μm promotes the intermixing of Ti and Al grains at the cathode surface which resulted in lower macroparticle density of TiAlN coatings, a Ti/Al ratio closer to cathode composition, and improved hardness. However, further reduction in grain size from 100 μm to 10 μm, upon arcing favors a self-sustaining reaction between Ti and Al grains whose end product is the γ phase. This self-sustaining reaction and arc-created holelike features on the cathode surface render the coatings rich in Al and high in macroparticle density which results in reduced hardness.

The research in the effects of disparity among the parent phases in terms of W.F. and C.E. of the constituents of Ti-50 at.% Al cathodes on the microstructural evolution of the converted layer and the coating's microstructure shows that the phase which has lower W.F. and C.E. suffers higher erosion. It is also shown that irrespective of the cathode type, the arc guiding magnetic field and the surface geometry of the cathode are two significant factors in controlling the microstructure of TiAlN coatings.

The research in finding correlations between the arc guiding magnetic field, plasma density and the microstructure of the coatings show that for a particular arc source assembly the plasma density can be altered by just changing the strength of an electromagnet. A weaker electromagnet strength results in higher plasma density of Ti-67 at.% Al cathode which promotes the growth of dual phase TiAlN coatings, while a stronger magnetic field reduces the plasma density and promotes the growth of single phase TiAIN coatings and a reduction in deposition rate.

The research in establishing the correlations between N2 pressure, plasma properties and coatings microstructure reveals that for plasma generated from Ti-50 at.% Al cathode the average charge state of Ti shows a stark increase with an increase in N2 pressure from 0 Pa to 0.07 Pa, and upon further increase in N2 pressure the average charge state gradually decreases. Moreover, the ionization of nitrogen takes place at the expense of Al2+. It has also been observed that the electron density increases with increasing the N2 pressure while the effective electron temperature decreases. Furthermore, the energetic ion flux to the coating's growth front decreases as the N2 pressure is increased which leads to the alteration of growth texture from 220 to 111.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2019. p. 58
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 2029
National Category
Nano Technology Manufacturing, Surface and Joining Technology
Identifiers
urn:nbn:se:liu:diva-162140 (URN)9789179299668 (ISBN)
Public defence
2019-12-11, Planck, Fysikhuset, Campus Valla, Linköping, 09:15 (English)
Opponent
Supervisors
Available from: 2019-11-21 Created: 2019-11-21 Last updated: 2019-12-04Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records BETA

Zhu, JianqiangSyed, Muhammad BilalJohansson Jöesaar, Mats P.Odén, Magnus

Search in DiVA

By author/editor
Zhu, JianqiangSyed, Muhammad BilalJohansson Jöesaar, Mats P.Odén, Magnus
By organisation
Nanostructured MaterialsThe Institute of Technology
In the same journal
Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films
Materials Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 386 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf