liu.seSök publikationer i DiVA
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Influence of deformation rate on mechanical response of an AISI 316L austenitic stainless steel
Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska högskolan.
Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska högskolan.
Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska högskolan.
Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska högskolan.
2014 (Engelska)Ingår i: Advanced Materials Research, ISSN 1022-6680, E-ISSN 1662-8985, Vol. 922, s. 49-54Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Austenitic stainless steels are often used for components in demanding environment. These materials can withstand elevated temperatures and corrosive atmosphere like in energy producing power plants. They can be plastically deformed at slow strain rates and high alternating or constant tensile loads such as fatigue and creep at elevated temperatures. This study investigates how deformation rates influence mechanical properties of an austenitic stainless steel. The investigation includes tensile testing using strain rates of 2*10-3/ and 10-6/s at elevated temperatures up to 700°C. The material used in this study is AISI 316L. When the temperature is increasing the strength decreases. At a slow strain rate and elevated temperature the stress level decreases gradually with increasing plastic deformation probably due to dynamic recovery and dynamic recrystallization. However, with increasing strain rate elongation to failure is decreasing. AISI 316L show larger elongation to failure when using a strain rate of 10-6/s compared with 2*10-3/s at each temperature. Electron channelling contrast imaging is used to characterize the microstructure and discuss features in the microstructure related to changes in mechanical properties. Dynamic recrystallization has been observed and is related to damage and cavity initiation and propagation.

Ort, förlag, år, upplaga, sidor
Trans Tech Publications Inc., 2014. Vol. 922, s. 49-54
Nyckelord [en]
Austenitic stainless steel, elevated temperature, ageing, dynamic recrystallization
Nationell ämneskategori
Teknik och teknologier
Identifikatorer
URN: urn:nbn:se:liu:diva-98240DOI: 10.4028/www.scientific.net/AMR.922.49OAI: oai:DiVA.org:liu-98240DiVA, id: diva2:653400
Konferens
THERMEC '2013, International Conference on Processing & Manufacturing of Advanced Materials. Processeing, Fabrication, Properties, Applications. December 2-6, Las Vegas, USA
Tillgänglig från: 2013-10-04 Skapad: 2013-10-04 Senast uppdaterad: 2017-12-06Bibliografiskt granskad
Ingår i avhandling
1. High-Temperature Behaviour of Austenitic Alloys: Influence of Temperature and Strain Rate on Mechanical Properties and Microstructural Development
Öppna denna publikation i ny flik eller fönster >>High-Temperature Behaviour of Austenitic Alloys: Influence of Temperature and Strain Rate on Mechanical Properties and Microstructural Development
2013 (Engelska)Licentiatavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

The global increase in energy consumption and the global warming from greenhouse gas emission creates the need for more environmental friendly energy production processes. Biomass power plants with higher efficiency could generate more energy but also reduce the emission of greenhouse gases, e.g. CO2. Biomass is the largest global contributor to renewable energy and offers no net contribution of CO2 to the atmosphere. One way to increase the efficiency of the power plants is to increase temperature and pressure in the boiler parts of the power plant.

The materials used for the future biomass power plants, with higher temperature and pressure, require improved properties, such as higher yield strength, creep strength and high-temperature corrosion resistance. Austenitic stainless steels and nickel-base alloys have shown good mechanical and chemical properties at the operation temperatures of today’s biomass power plants. However, the performance of austenitic stainless steels at the future elevated temperatures is not fully understood.

The aim of this licentiate thesis is to increase our knowledge about the mechanical performance of austenitic stainless steels at the demanding conditions of the new generation power plants. This is done by using slow strain rate tensile deformation at elevated temperature and long term hightemperature ageing together with impact toughness testing. Microscopy is used to investigate deformation, damage and fracture behaviours during slow deformation and the long term influence of temperature on toughness in the microstructure of these austenitic alloys. Results show that the main deformation mechanisms are planar dislocation deformations, such as planar slip and slip bands. Intergranular fracture may occur due to precipitation in grain boundaries both in tensile deformed and impact toughness tested alloys. The shape and amount of σ-phase precipitates have been found to strongly influence the fracture behaviour of some of the austenitic stainless steels. In addition, ductility is affected differently by temperature depending on alloy tested and dynamic strain ageing may not always lead to a lower ductility.

Ort, förlag, år, upplaga, sidor
Linköping: Linköping University Electronic Press, 2013. s. 34
Serie
Linköping Studies in Science and Technology. Thesis, ISSN 0280-7971 ; 1619
Nationell ämneskategori
Teknik och teknologier
Identifikatorer
urn:nbn:se:liu:diva-98242 (URN)10.3384/lic.diva-98242 (DOI)LIU-TEK-LIC-2013:53 (Lokalt ID)978-91-7519-512-4 (ISBN)LIU-TEK-LIC-2013:53 (Arkivnummer)LIU-TEK-LIC-2013:53 (OAI)
Presentation
2013-11-01, ACAS, Hus A, Campus Valla, Linköpings universitet, Linköping, 10:15 (Engelska)
Opponent
Handledare
Tillgänglig från: 2013-10-04 Skapad: 2013-10-04 Senast uppdaterad: 2019-12-08Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Personposter BETA

Calmunger, MattiasChai, GuocaiJohansson, StenMoverare, Johan

Sök vidare i DiVA

Av författaren/redaktören
Calmunger, MattiasChai, GuocaiJohansson, StenMoverare, Johan
Av organisationen
KonstruktionsmaterialTekniska högskolan
I samma tidskrift
Advanced Materials Research
Teknik och teknologier

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 680 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf