Deep brain stimulation (DBS) is an effective treatment for movement disorders e.g. Parkinson's disease. Thin electrodes are implanted into the deep brain structures by means of stereotactic technique and electrical stimulations are delivered to the brain tissue. Accuracy and safety during the implantation is important for optimal stimulation effect and minimization of bleedings. In addition to microelectrode recording and impedance measurements, intraoperative optical measurements using laser Doppler perfusion monitoring (LDPM) have previously been suggested as guidance tool during stereotactic DBS implantations. In this study we compare optical trajectories, recorded with LDPM ranging from cortex towards the subthalamic nucleus (STN), to the corresponding magnetic resonance imaging (MRI) trajectories. Inversed gray scales from the T2-weighted MRI were used for comparison with the total light intensity (TLI) representing tissue grayness. Both curves followed a general tendency with a deep dip in the vicinity to the left ventricle. MRI trajectories might help in predicting the optical trajectory but further studies including more data and fine tuning of the comparative methodology are required