liu.seSearch for publications in DiVA
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Robin–Dirichlet algorithms for the Cauchy problem for the Helmholtz equation
Linköpings universitet, Matematiska institutionen, Beräkningsvetenskap. Linköpings universitet, Tekniska högskolan.
Linköpings universitet, Matematiska institutionen, Tillämpad matematik. Linköpings universitet, Tekniska högskolan.
Linköpings universitet, Matematiska institutionen, Tillämpad matematik. Linköpings universitet, Tekniska högskolan.
Linköpings universitet, Matematiska institutionen, Tillämpad matematik. Linköpings universitet, Tekniska högskolan.
2014 (engelsk)Manuskript (preprint) (Annet vitenskapelig)
Abstract [en]

The Cauchy problem for the Helmholtz equation is considered. It was demonstrated in a previous paper by the authors that the alternating algorithm suggested by V.A. Kozlov and V.G. Maz’ya does not converge for large wavenumbers in the Helmholtz equation. We prove here that if we alternate Robin and Dirichlet boundary conditions instead of Neumann and Dirichlet boundary conditions, then the algorithm will converge. We present also another algorithm based on the same idea, which converges for large wavenumbers. Numerical implementations obtained using the finite difference method are presented. Numerical results illustrate that the algorithms suggested in this paper, produce a convergent iterative sequences.

sted, utgiver, år, opplag, sider
2014.
HSV kategori
Identifikatorer
URN: urn:nbn:se:liu:diva-105876OAI: oai:DiVA.org:liu-105876DiVA, id: diva2:711803
Tilgjengelig fra: 2014-04-11 Laget: 2014-04-11 Sist oppdatert: 2014-04-11bibliografisk kontrollert
Inngår i avhandling
1. Iterative Methods for Solving the Cauchy Problem for the Helmholtz Equation
Åpne denne publikasjonen i ny fane eller vindu >>Iterative Methods for Solving the Cauchy Problem for the Helmholtz Equation
2014 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

The inverse problem of reconstructing the acoustic, or electromagnetic, field from inexact measurements on a part of the boundary of a domain is important in applications, for instance for detecting the source of acoustic noise. The governing equation for the applications we consider is the Helmholtz equation. More precisely, in this thesis we study the case where Cauchy data is available on a part of the boundary and we seek to recover the solution in the whole domain. The problem is ill-posed in the sense that small errors in the Cauchy data may lead to large errors in the recovered solution. Thus special regularization methods that restore the stability with respect to measurements errors are used.

In the thesis, we focus on iterative methods for solving the Cauchy problem. The methods are based on solving a sequence of well-posed boundary value problems. The specific choices for the boundary conditions used are selected in such a way that the sequence of solutions converges to the solution for the original Cauchy problem. For the iterative methods to converge, it is important that a certain bilinear form, associated with the boundary value problem, is positive definite. This is sometimes not the case for problems with a high wave number.

The main focus of our research is to study certain modifications to the problem that restore positive definiteness to the associated bilinear form. First we add an artificial interior boundary inside the domain together with a jump condition that includes a parameter μ. We have shown by selecting an appropriate interior boundary and sufficiently large value for μ, we get a convergent iterative regularization method. We have proved the convergence of this method. This method converges slowly. We have therefore developed two conjugate gradient type methods and achieved much faster convergence. Finally, we have attempted to reduce the size of the computational domain by solving well–posed problems only in a strip between the outer and inner boundaries. We demonstrate that by alternating between Robin and Dirichlet conditions on the interior boundary, we can get a convergent iterative regularization method. Numerical experiments are used to illustrate the performance of the  methods suggested.

sted, utgiver, år, opplag, sider
Linköping: Linköping University Electronic Press, 2014. s. 12
Serie
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1593
HSV kategori
Identifikatorer
urn:nbn:se:liu:diva-105879 (URN)10.3384/diss.diva-105879 (DOI)978-91-7519-350-2 (ISBN)
Disputas
2014-05-09, ACAS, A–huset, Campus Valla, Linköpings universitet, Linköping, 13:15 (engelsk)
Opponent
Veileder
Merknad

An invalid ISRN (LIU-TEK-LIC-2012:15) is stated on page 2. The ISRN belongs to the Licentiate thesis, published in 2012.

Tilgjengelig fra: 2014-04-11 Laget: 2014-04-11 Sist oppdatert: 2014-04-11bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Personposter BETA

Berntsson, FredrikKozlov, VladimirMpinganzima, LydieTuresson, Bengt-Ove

Søk i DiVA

Av forfatter/redaktør
Berntsson, FredrikKozlov, VladimirMpinganzima, LydieTuresson, Bengt-Ove
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric

urn-nbn
Totalt: 397 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf