liu.seSearch for publications in DiVA

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt860",{id:"formSmash:upper:j_idt860",widgetVar:"widget_formSmash_upper_j_idt860",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt861_j_idt864",{id:"formSmash:upper:j_idt861:j_idt864",widgetVar:"widget_formSmash_upper_j_idt861_j_idt864",target:"formSmash:upper:j_idt861:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

An accelerated alternating procedure for the Cauchy problem for the Helmholtz equationPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
2014 (English)In: Computers and Mathematics with Applications, ISSN 0898-1221, E-ISSN 1873-7668, Vol. 68, no 1-2, p. 44-60Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

Elsevier, 2014. Vol. 68, no 1-2, p. 44-60
##### Keywords [en]

Cauchy problem; alternating iterative method; conjugate gradient methods; inverse problem; ill–posed problem
##### National Category

Mathematics
##### Identifiers

URN: urn:nbn:se:liu:diva-105877DOI: 10.1016/j.camwa.2014.05.002ISI: 000338816300004OAI: oai:DiVA.org:liu-105877DiVA, id: diva2:711804
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt1166",{id:"formSmash:j_idt1166",widgetVar:"widget_formSmash_j_idt1166",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt1172",{id:"formSmash:j_idt1172",widgetVar:"widget_formSmash_j_idt1172",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt1178",{id:"formSmash:j_idt1178",widgetVar:"widget_formSmash_j_idt1178",multiple:true}); Available from: 2014-04-11 Created: 2014-04-11 Last updated: 2017-12-05Bibliographically approved
##### In thesis

In this paper we study the Cauchy problem for the Helmholtz equation. This problem appears in various applications and is severely ill–posed. The modified alternating procedure has been proposed by the authors for solving this problem but the convergence has been rather slow. We demonstrate how to instead use conjugate gradient methods for accelerating the convergence. The main idea is to introduce an artificial boundary in the interior of the domain. This addition of the interior boundary allows us to derive an inner product that is natural for the application and that gives us a proper framework for implementing the steps of the conjugate gradient methods. The numerical results performed using the finite difference method show that the conjugate gradient based methods converge considerably faster than the modified alternating iterative procedure studied previously.

1. Iterative Methods for Solving the Cauchy Problem for the Helmholtz Equation$(function(){PrimeFaces.cw("OverlayPanel","overlay711818",{id:"formSmash:j_idt1464:0:j_idt1468",widgetVar:"overlay711818",target:"formSmash:j_idt1464:0:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

doi
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1926",{id:"formSmash:j_idt1926",widgetVar:"widget_formSmash_j_idt1926",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1982",{id:"formSmash:lower:j_idt1982",widgetVar:"widget_formSmash_lower_j_idt1982",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1983_j_idt1985",{id:"formSmash:lower:j_idt1983:j_idt1985",widgetVar:"widget_formSmash_lower_j_idt1983_j_idt1985",target:"formSmash:lower:j_idt1983:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});