liu.seSök publikationer i DiVA
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Salmonella Biofilm Modulation with Electrically Conducting Polymers
Dep. of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
Dep. of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
Dep. of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
Visa övriga samt affilieringar
2014 (Engelska)Manuskript (preprint) (Övrigt vetenskapligt)
Abstract [en]

Biofilms are ubiquitous in many human activities, constituting a threat or an advantage depending on the context of application. It is therefore of great interest to obtain new materials to study and control how biofilms are formed. Here, heparin and DBS (dodecylbenzenesulfonate) are incorporated as counter-ions to the PEDOT (poly(3,4-ethylenedioxythiophene)) backbone, forming conducting polymer thin-films. Polymer synthesis is based on electrodeposition, allowing for the adjustment, during fabrication, of properties like charge and hydrophobicity, important in bacterial adhesion. The electrochemical redox state of the polymer is of fundamental importance in Salmonella enterica Serovar Typhimurium biofilm modulation. Oxidized composites show increased levels of biofilm growth compared to reduced and pristine polymer films. As a result, biofilm formation is modulated by the application of a low electric voltage. Moreover, biofilm morphology and topology are affected by both the electrochemical redox state and the incorporated counter-ion, making these materials a useful tool in biofilm engineering.

Ort, förlag, år, upplaga, sidor
2014.
Nationell ämneskategori
Polymerkemi Cellbiologi
Identifikatorer
URN: urn:nbn:se:liu:diva-106250OAI: oai:DiVA.org:liu-106250DiVA, id: diva2:715018
Tillgänglig från: 2014-04-30 Skapad: 2014-04-30 Senast uppdaterad: 2017-02-03Bibliografiskt granskad
Ingår i avhandling
1. Electronic Control of Cell Cultures Using Conjugated Polymer Surfaces
Öppna denna publikation i ny flik eller fönster >>Electronic Control of Cell Cultures Using Conjugated Polymer Surfaces
2014 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

In the field of bioelectronics various electronic materials and devices are used in combination with biological systems in order to create novel applications within cell biology and medicine. A famous example of a successful bioelectronics application is the pacemaker. Metals are the most common electrical conductors, whereas polymers are generally considered being insulators. However, in the late 1970s it was shown that a special class of polymers with conjugated double bonds, could in fact, after some chemical modifications, conduct electricity. This was the start of the research field known as conducting polymers, and then later on organic electronics, a research area that has grown rapidly during the last decades. Conjugated polymers are also suitable to interact and interface with cells and tissues, as they are generally soft, flexible and biocompatible. In addition, their chemical properties can be tailor-made through synthesis to fit biological requirements and functions. During the last years applications using organic bioelectronics have become numerous.

This thesis describes applications based on different conjugated polymers aiming to stimulate and control cell cultures. When culturing cells it is of interest to be able to control events such as adhesion, spreading, proliferation, differentiation and detachment. First, the impact of different polymer compositions and redox states on the adhesion of bacteria and subsequent biofilm formation was investigated. Similar polymer electrodes were also used to steer differentiation of neural stem cells, through changes in the surface exposure of a relevant biomolecule. Controlled delivery of molecules was achieved by coating nanoporous membranes with polymers that swell and contract when changing the redox state. Finally, electronic control over cell detachment using a water-soluble polymer was achieved. When applying a positive potential to this polymer, it swells, cracks and finally detaches, taking the cells that was cultured on top along with it. Together, the work and results presented in this thesis demonstrate a versatile conjugated polymer technology to achieve electronic control of the different growth stages of cell cultures as well as cellular functions.

Ort, förlag, år, upplaga, sidor
Linköping: Linköping University Electronic Press, 2014. s. 64
Serie
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1594
Nationell ämneskategori
Naturvetenskap
Identifikatorer
urn:nbn:se:liu:diva-106254 (URN)10.3384/diss.diva-106254 (DOI)978-91-7519-340-3 (ISBN)
Disputation
2014-05-23, K2, Kåkenhus, Campus Valla, Linköpings universitet, Linköping, 10:15 (Engelska)
Opponent
Handledare
Tillgänglig från: 2014-04-30 Skapad: 2014-04-30 Senast uppdaterad: 2019-11-19Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Personposter BETA

Persson, Kristin MBerggren, Magnus

Sök vidare i DiVA

Av författaren/redaktören
Persson, Kristin MBerggren, Magnus
Av organisationen
Fysik och elektroteknikTekniska högskolan
PolymerkemiCellbiologi

Sök vidare utanför DiVA

GoogleGoogle Scholar

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 591 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf