liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
On the behavior of the silicon donor in conductive AlxGa1-xN (0.63≤x≤1) layers
Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.
Show others and affiliations
2015 (English)In: Physica status solidi. B, Basic research, ISSN 0370-1972, E-ISSN 1521-3951, Vol. 252, no 6, p. 1306-1310Article in journal (Refereed) Published
Abstract [en]

We have studied the silicon donor behavior in intentionally silicon doped AlxGa1-xN (0.63≤x≤1) grown by hot-wall metal-organic chemical vapor deposition. Efficient silicon doping was obtained for lower Al contents whereas the conductivity drastically reduces for AlGaN layers with Al content in the range x~0.84-1. Degradation of the structural quality and compensation by residual O and C impurities were ruled out as possible explanations for the reduced conductivity. By combining frequency dependent capacitance-voltage and electron paramagnetic resonance measurements we show that the Si donors are electrically active and that the reduced conductivity can be explained by the increased activation energy caused by the sharp deepening of the Si DX state..

Place, publisher, year, edition, pages
Wiley-VCH Verlagsgesellschaft, 2015. Vol. 252, no 6, p. 1306-1310
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:liu:diva-106725DOI: 10.1002/pssb.201451559ISI: 000355756200016OAI: oai:DiVA.org:liu-106725DiVA, id: diva2:718150
Note

Swedish Research Council (VR); VR Linkoping Linnaeus Initiative for Novel Functional Materials (LiLi-NFM); Swedish Energy Agency; Knut and Alice Wallenberg Foundation (KAW); Swedish Governmental Agency for Innovation Systems (VINNOVA)

Available from: 2014-05-20 Created: 2014-05-20 Last updated: 2024-03-01Bibliographically approved
In thesis
1. Doping of high-Al-content AlGaN grown by MOCVD
Open this publication in new window or tab >>Doping of high-Al-content AlGaN grown by MOCVD
2014 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The high-Al-content AlxGa1-xN, x > 0.70, is the principal wide-band-gap alloy system to enable the development of light-emitting diodes operating at the short wavelengths in the deep-ultraviolet, λ < 280 nm. The development of the deep-ultraviolet light-emitting diodes (DUV LEDs) is driven by the social and market impact expected from their implementation in portable units for water disinfection and based on the damaging effect of the deep-ultraviolet radiation on the DNA of various microorganisms. Internationally, intense research and technology developments occur in the past few years, yet, the external quantum efficiency of the DUV LEDs is typically below 1%.

One of the main material issues in the development of the DUV LEDs is the achievement of n- and ptype doped layers of high-Al-content AlxGa1-xN with low resistivity, which is required for the electrical pumping of the diodes. The doping process, however, becomes significantly more complex with increasing the Al content and the resistivity value can be as high as 101-102 Ω cm for n-type AlN doped by silicon, and 107-108 Ω cm for p-type AlN doped by magnesium.

The present study is therefore focused on gaining a better understanding of the constraints in the doping process of the high-Al-content AlxGa1-xN alloys, involving mainly the silicon dopant. For this purpose, the epitaxial growth of the high-Al-content AlxGa1-xN and AlN by the implementation of the distinct hot-wall MOCVD is developed in order to achieve layers of good structural and morphological properties, and with low content of residual impurities, particularly oxygen and carbon. Substitutional point defects such as ON and CN may have a profound impact on the doping by their involvement in effects of n-type carrier compensation. The process temperature can be set from 1000 °C and up to 1400 °C in the present study, which is a principal advantage in order to optimize the material properties of the high-Al-content AlxGa1-xN and AlN. The epitaxial growth of the high-Alcontent AlxGa1-xN and AlN is largely performed on 4H-SiC substrates motivated by (i) the lattice mismatch of ~ 1% along the basal plane (the smallest among other available substrates including Si and sapphire), (ii) the good thermal conductivity of 3.7 W cm-1 K-1, which is essential to minimize the self-heating during the operation of any light-emitting diode, and (iii) the limited access to true-bulk AlN wafers. The Si doping is investigated over a large range of [Si] ~ 1×1017 cm-3 - 1×1020 cm-3. Only the high doping range of [Mg] ~ (1-3)×1019 cm-3 is targeted motivated by the large thermal ionization energy of this common acceptor (from 200 meV in GaN to about 630 meV in AlN). The material characterization involves extensive implementation of atomic force microscopy (AFM), x-ray diffraction (XRD), cathodoluminescence (CL), secondary ion mass spectrometry (SIMS), capacitancevoltage measurements, as well as measurements of the conductivity of the layers by contactless microwave-based technique. The possibility to perform electron paramagnetic resonance (EPR) measurements on the Si-doped high-Al-content AlxGa1-xN is essential in order to establish any effect of self-compensation of the shallow donor state of silicon through the related so-called DX state. The EPR measurements corroborate the study of the incorporation kinetics of silicon and oxygen at various process temperatures and growth rates.

The outcome of this study is accordingly summarized and presents our understanding for (i) the complex impact of silicon and oxygen on the n-type conductivity of Al0.77Ga0.23N, which is the alloy composition at which a drastic reduction of the n-type conductivity of high-Al-content AlxGa1-xN is commonly reported (paper 1); (ii) the strain and morphology compliance during the intentional doping by silicon and magnesium, and its correlation with the resistivity in the highly doped layers of Al0.82Ga0.18N alloy composition (paper2); (iii) the n-type conductivity of highly-Si-doped Al0.72Ga0.28N layers as bound by the process temperature (paper 3); and (iv) the shallow donor or DX behavior of the Si dopant in conductive AlxGa1-xN layers, 0.63 ≤ x ≤ 1 (paper 4). It is noted that the measured n-type conductivity in reference layers of Al0.77Ga0.23N, alternatively Al0.72Ga0.28N, alloy composition is on par with the state-of-the-art values, i.e. ≤ 0.05 Ω cm, and 0.012 Ω cm, respectively. A room-temperature resistivity of 7 kΩ cm is measured in Mg-doped layers of Al0.85Ga0.15N alloy composition, which is superior to the state-of-art values (paper 5). The performance of the transport properties of the high-Al-content AlxGa1-xN layers is expected to improve with improvement of their material quality. This can be achieved by improvement of the crystalline quality of the AlN-on-SiC template and by the implementation of true-bulk AlN substrates. The AlN heteroepitaxial growth at the process temperatures of 1100-1200 °C is therefore investigated (paper 6). The lattice constants, structural and optical properties of true-bulk, homoepitaxial and heteroepitaxial AlN material grown at high process temperatures of up to 1400 °C is further reported (paper 7).

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2014. p. 43
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1597
National Category
Natural Sciences
Identifiers
urn:nbn:se:liu:diva-106733 (URN)10.3384/diss.diva-106733 (DOI)978-91-7519-332-8 (ISBN)
Public defence
2014-06-10, Planck, Fysikhuset, Campus Valla, Linköpings universitet, Linköping, 10:15 (English)
Opponent
Supervisors
Available from: 2014-05-20 Created: 2014-05-20 Last updated: 2024-03-01Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Nilsson, DanielTrinh, Xuan ThangJanzén, ErikSon, Tien NguyenKakanakova-Georgieva, Anelia

Search in DiVA

By author/editor
Nilsson, DanielTrinh, Xuan ThangJanzén, ErikSon, Tien NguyenKakanakova-Georgieva, Anelia
By organisation
Semiconductor MaterialsThe Institute of TechnologyDepartment of Physics, Chemistry and Biology
In the same journal
Physica status solidi. B, Basic research
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 543 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf