liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Synthesis of Three Dimensional Nickel Cobalt Oxide Nanoneedles on Nickel Foam, Their Characterization and Glucose Sensing Application
Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, The Institute of Technology.
Show others and affiliations
2014 (English)In: Sensors, E-ISSN 1424-8220, Vol. 14, no 3, p. 5415-5425Article in journal (Refereed) Published
Abstract [en]

In the present work, NiCo2O4 nanostructures are fabricated in three dimensions (3D) on nickel foam by the hydrothermal method. The nanomaterial was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The nanostructures exhibit nanoneedle-like morphology grown in 3D with good crystalline quality. The nanomaterial is composed of nickel, cobalt and oxygen atoms. By using the favorable porosity of the nanomaterial and the substrate itself, a sensitive glucose sensor is proposed by immobilizing glucose oxidase. The presented glucose sensor has shown linear response over a wide range of glucose concentrations from 0.005 mM to 15 mM with a sensitivity of 91.34 mV/decade and a fast response time of less than 10 s. The NiCo2O4 nanostructures-based glucose sensor has shown excellent reproducibility, repeatability and stability. The sensor showed negligible response to the normal concentrations of common interferents with glucose sensing, including uric acid, dopamine and ascorbic acid. All these favorable advantages of the fabricated glucose sensor suggest that it may have high potential for the determination of glucose in biological samples, food and other related areas.

Place, publisher, year, edition, pages
Basel, Switzerland: MDPI , 2014. Vol. 14, no 3, p. 5415-5425
Keywords [en]
nickel cobalt oxide nanostructures; nickel foam; glucose sensor; potentiometric method
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:liu:diva-108230DOI: 10.3390/s140305415ISI: 000336783300082OAI: oai:DiVA.org:liu-108230DiVA, id: diva2:729632
Available from: 2014-06-26 Created: 2014-06-26 Last updated: 2024-01-08Bibliographically approved
In thesis
1. Synthesis, Characterization and Applications of Metal Oxide Nanostructures
Open this publication in new window or tab >>Synthesis, Characterization and Applications of Metal Oxide Nanostructures
2014 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The main objective of nanotechnology is to build self-powered nanosystems that are ultrasmall in size, exhibit super sensitivity, extraordinary multi functionality, and extremely low power consumption. As we all know that 21st century has brought two most important challenges for us. One is energy shortage and the other is global warming. Now to overcome these challenges, it is highly desirable to develop nanotechnology that harvests energy from the environment to fabricate self-power and low-carbon nanodevices. Therefore a self-power nanosystem that harvests its operating energy from the environment is an attractive proposition. This is also feasible for nanodevices owing to their extremely low power consumption. One advantageous approach towards harvesting energy from the environment is the utilization of semiconducting piezoelectric materials, which facilitate the conversion of mechanical energy into electrical energy. Among many piezoelectric materials ZnO has the rare attribute of possessing both piezoelectric and semiconducting properties. But most applications of ZnO utilize either the semiconducting or piezoelectric property, and now it’s time to fully employ the coupled semiconducting-piezoelectric properties to form  the basis for electromechanically coupled nanodevices. Since wurtzite zinc oxide (ZnO) is structurally noncentral symmetric and has the highest piezoelectric tensor among tetrahedrally bonded semiconductors, therefore it becomes a promising candidate for energy harvesting applications. ZnO is relatively biosafe and biocompatible as well, so it can be used at large scale without any harm to the living environment.

The synthesis of another transition metal oxide known as Co3O4 is also important due to its potential usage in the material science, physics and chemistry fields. Co3O4 has been studied extensively due to low cost, low toxicity, the most naturally abundant, high surface area, good redox, easily tunable surface and structural properties. These significant properties enable Co3O4 fruitful for developing variety of nanodevices. Co3O4 nanostructures have been focused considerably in the past decade due to their high electro-chemical performance, which is essential for developing highly sensitive sensor devices.

I started my work with the synthesis of ZnO nanostructures with a focus to improve the amount of harvested energy by utilizing oxygen plasma treatment. Then I grow ZnO nanorods on different flexible substrates, in order to observe the effect of substrate on the amount of harvested energy. After that I worked on understanding the mechanism and causes of variation in the resulting output potential generated from ZnO nanorods. My next target belongs to an innovative approach in which AFM tip decorated with ZnO nanorods was utilized to improve the output energy. Then I investigated Co3O4 nanostructures though the effect of anions and utilized one of the nanostructure to develop a fast and reliable pH sensor. Finally to take the advantage of higher degree of redox chemistry of NiCo0O4 compared to the single phase of nickel oxide and cobalt oxide, a sensitive glucose sensor is developed by immobilizing glucose oxidase.

However, there were problems with the mechanical robustness, lifetime, output stability and environmental adaptability of such devices, therefore more work is going on to find out new ways and means in order to improve the performance of fabricated nanogenerators and sensors.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2014. p. 71
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1610
Keywords
Aqueous chemical growth method, ZnO nanorods, Oxygen plasma treatment, Piezoelectric and mechanical properties, Atomic force microscope, Nanoindentation, Co3O4 nanostructures, Anions effect, pH sensor, NiCo2O4 nanostructures, Glucose sensor
National Category
Physical Sciences Nano Technology
Identifiers
urn:nbn:se:liu:diva-108894 (URN)10.3384/diss.diva-108894 (DOI)978-91-7519-265-9 (ISBN)
Public defence
2014-08-22, K 3, Kåkenhus, Campus Norrköping, Linköpings universitet, Linköping, 10:00 (English)
Opponent
Supervisors
Available from: 2014-07-11 Created: 2014-07-11 Last updated: 2024-01-08Bibliographically approved

Open Access in DiVA

fulltext(608 kB)1369 downloads
File information
File name FULLTEXT01.pdfFile size 608 kBChecksum SHA-512
99d09b3707a569150f9534d00ed95b2118db05d7aa65dac90b6366a9022760fc5c5e8f5ffd5dda001b6de28d01142fc36e2873edf3a8d7bfced27a7a44bc2ee9
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Authority records

Hussain, MushtaqueIbupoto, Zafar HussainAbbasi, Mazhar AliLiu, XianjieNur, OmerWillander, Magnus

Search in DiVA

By author/editor
Hussain, MushtaqueIbupoto, Zafar HussainAbbasi, Mazhar AliLiu, XianjieNur, OmerWillander, Magnus
By organisation
Physics and ElectronicsThe Institute of TechnologySurface Physics and Chemistry
In the same journal
Sensors
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
Total: 1371 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 556 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf