liu.seSearch for publications in DiVA
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Bulk-Like Laminated Nitride Metal/Semiconductor Superlattices for Thermoelectric Devices
Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska högskolan. Purdue University, IN 47907 USA .
Purdue University, IN 47907 USA .
MIT, MA 02139 USA .
MIT, MA 02139 USA .
Vise andre og tillknytning
2014 (engelsk)Inngår i: Journal of microelectromechanical systems, ISSN 1057-7157, E-ISSN 1941-0158, Vol. 23, nr 3, s. 672-680Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Bulk-like thermionic energy conversion devices have been fabricated from nanostructured nitride metal/semiconductor superlattices using a novel lamination process. 5-mu m thick (Hf0.5Zr0.5)N (6-nm)/ScN (6-nm) metal/semiconductor superlattices with a 12 nm period were deposited on 100-silicon substrates by reactive magnetron sputtering followed by a selective tetra methyl ammonium hydroxide substrate etching and a gold-gold lamination process to yield 300 mu m x 300 mu m x 290 mu m microscale thermionic energy conversion elements with 16,640 superlattice periods. The thermionic element had a Seebeck coefficient of -120 mu V/K at 800 K, an electrical conductivity of similar to 2500 Omega(-1)m(-1) at 800 K, and a thermal conductivity of 2.9 and 4.3 W/m-K at 300 and 625 K, respectively. The temperature dependence of the Seebeck coefficient from 300 to 800 K suggests a parallel parasitic conduction path that is dominant at low temperature, and the temperature independent electrical conductivity indicates that the (Hf0.5Zr0.5)N/gold interface contact resistivity currently dominates the device. The thermal conductivity of the laminate was significantly lower than the thermal conductivity of the individual metal or semiconductor layers, indicating the beneficial effect of the metal/semiconductor interfaces toward lowering the thermal conductivity. The described lamination process effectively bridges the gap between the nanoscale requirements needed to enhance the thermoelectric figure of merit ZT and the microscale requirements of real-world devices.

sted, utgiver, år, opplag, sider
Institute of Electrical and Electronics Engineers (IEEE) , 2014. Vol. 23, nr 3, s. 672-680
Emneord [en]
Laminates; superlattices; thermionic energy conversion; thermoelectric devices
HSV kategori
Identifikatorer
URN: urn:nbn:se:liu:diva-108931DOI: 10.1109/JMEMS.2013.2282743ISI: 000337128200023OAI: oai:DiVA.org:liu-108931DiVA, id: diva2:734199
Tilgjengelig fra: 2014-07-15 Laget: 2014-07-13 Sist oppdatert: 2017-12-05

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Personposter BETA

Schroeder, Jeremy L.

Søk i DiVA

Av forfatter/redaktør
Schroeder, Jeremy L.
Av organisasjonen
I samme tidsskrift
Journal of microelectromechanical systems

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 63 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf