liu.seSearch for publications in DiVA
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Performance-aware Composition Framework for GPU-based Systems
Linköpings universitet, Institutionen för datavetenskap, Programvara och system. Linköpings universitet, Tekniska högskolan. (PELAB)
Linköpings universitet, Institutionen för datavetenskap, Programvara och system. Linköpings universitet, Tekniska högskolan. (PELAB)ORCID-id: 0000-0001-5241-0026
2015 (engelsk)Inngår i: Journal of Supercomputing, ISSN 0920-8542, E-ISSN 1573-0484, Vol. 71, nr 12, s. 4646-4662Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

User-level components of applications can be made performance-aware by annotating them with performance model and other metadata. We present a component model and a composition framework for the automatically optimized composition of applications for modern GPU-based systems from such components, which may expose multiple implementation variants. The framework targets the composition problem in an integrated manner, with the ability to do global performance-aware composition across multiple invocations. We demonstrate several key features of our framework relating to performance-aware composition including implementation selection, both with performance characteristics being known (or learned) beforehand as well as cases when they are learned at runtime. We also demonstrate hybrid execution capabilities of our framework on real applications. Furthermore, we present a bulk composition technique that can make better composition decisions by considering information about upcoming calls along with data flow information extracted from the source program by static analysis. The bulk composition improves over the traditional greedy performance aware policy that only considers the current call for optimization.

sted, utgiver, år, opplag, sider
Springer, 2015. Vol. 71, nr 12, s. 4646-4662
Emneord [en]
Global composition, Multivariant software components, Implementation selection, Hybrid parallel execution, GPU-based systems, Performance portability, Autotuning, Optimizing compiler
HSV kategori
Identifikatorer
URN: urn:nbn:se:liu:diva-109661DOI: 10.1007/s11227-014-1105-1ISI: 000365185400015OAI: oai:DiVA.org:liu-109661DiVA, id: diva2:740190
Prosjekter
EU FP7 EXCESSSeRC OpCoReS
Forskningsfinansiär
EU, FP7, Seventh Framework Programme, 611183Swedish e‐Science Research Center, OpCoReSTilgjengelig fra: 2014-08-22 Laget: 2014-08-22 Sist oppdatert: 2018-01-11

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Personposter BETA

Dastgeer, UsmanKessler, Christoph

Søk i DiVA

Av forfatter/redaktør
Dastgeer, UsmanKessler, Christoph
Av organisasjonen
I samme tidsskrift
Journal of Supercomputing

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 66 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf