liu.seSearch for publications in DiVA
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Object Oriented Mathematical Modelling and Compilation to Parallel Code
Linköpings universitet, Institutionen för datavetenskap. Linköpings universitet, Tekniska högskolan.
Linköpings universitet, Institutionen för datavetenskap, PELAB - Laboratoriet för programmeringsomgivningar. Linköpings universitet, Tekniska högskolan.ORCID-id: 0000-0002-3435-4996
1997 (engelsk)Inngår i: Parallel Computing in Optimization / [ed] Athanasios Migdalas, Panos M. Pardalos and Sverre Storøy, Kluwer Academic Publishers, 1997Kapittel i bok, del av antologi (Annet vitenskapelig)
Abstract [en]

The current state of the art in programming for scientific computing is still rather low-level. The mathematical model behind a computing application usually is written using pen and paper, whereas the corresponding numerical software often is developed manually in Fortran or C. This is especially true in application areas such as mechanical analysis, where complex non-linear problems are the norm, and high performance is required. Ideally, a high-level programming environment would provide computer support for these development steps. This motivated the development of the ObjectMath system. Using ObjectMath, complex mathematical models may be structured in an object oriented way, symbolically simplified, and transformed to efficient numerical code in C++ or Fortran.

However, many scientific computing problems are quite computationally demanding, which makes it desirable to use parallel computers. Unfortunately, generating parallel code from arbitrary mathematical models is an intractable problem. Therefore, we have focused most of our efforts on a specific problem domain where the main computation is to solve ordinary differential equation systems where most of the computing time is spent in application specific code, rather than in the serial solver kernel. We have investigated automatic parallelisation of the computation of ordinary differential equation systems at three different levels of granularity: the equation system level, the equation level, and the clustered task level. At the clustered task level we employ domain specific knowledge and existing scheduling and clustering algorithms to partition and distribute the computation.

sted, utgiver, år, opplag, sider
Kluwer Academic Publishers, 1997.
Serie
Applied optimization ; 7
HSV kategori
Identifikatorer
URN: urn:nbn:se:liu:diva-110157ISBN: 0-7923-4583-5 (tryckt)OAI: oai:DiVA.org:liu-110157DiVA, id: diva2:743186
Tilgjengelig fra: 2014-09-03 Laget: 2014-09-03 Sist oppdatert: 2014-10-02

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Find book at a Swedish library/Hitta boken i ett svenskt bibliotekFind book in another country/Hitta boken i ett annat land

Personposter BETA

Andersson, NiclasFritzson, Peter

Søk i DiVA

Av forfatter/redaktør
Andersson, NiclasFritzson, Peter
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetric

isbn
urn-nbn
Totalt: 146 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf