liu.seSök publikationer i DiVA
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
All-printed diode operating at 1.6 GHz
Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
De La Rue Plc, Overton, Hampshire, UK .
Acreo AB, Norrköping, Sweden.
Visa övriga samt affilieringar
2014 (Engelska)Ingår i: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 111, nr 33, s. 11943-11948Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Printed electronics are considered for wireless electronic tags and sensors within the future Internet-of-things (IoT) concept. As a consequence of the low charge carrier mobility of present printable organic and inorganic semiconductors, the operational frequency of printed rectifiers is not high enough to enable direct communication and powering between mobile phones and printed e-tags. Here, we report an all-printed diode operating up to 1.6 GHz. The device, based on two stacked layers of Si and NbSi2 particles, is manufactured on a flexible substrate at low temperature and in ambient atmosphere. The high charge carrier mobility of the Si microparticles allows device operation to occur in the charge injection-limited regime. The asymmetry of the oxide layers in the resulting device stack leads to rectification of tunneling current. Printed diodes were combined with antennas and electrochromic displays to form an all-printed e-tag. The harvested signal from a Global System for Mobile Communications mobile phone was used to update the display. Our findings demonstrate a new communication pathway for printed electronics within IoT applications.

Ort, förlag, år, upplaga, sidor
National Academy of Sciences , 2014. Vol. 111, nr 33, s. 11943-11948
Nyckelord [en]
UHF; silicon particle
Nationell ämneskategori
Elektroteknik och elektronik Fysik
Identifikatorer
URN: urn:nbn:se:liu:diva-110476DOI: 10.1073/pnas.1401676111ISI: 000340438800027PubMedID: 25002504OAI: oai:DiVA.org:liu-110476DiVA, id: diva2:746967
Anmärkning

Funding Agencies|Knut and Alice Wallenberg Foundation (Power Paper Project) [KAW 2011.0050]; Onnesjo Foundation; Swedish Research Council Linnaeus Grant LiLi-NFM; European Regional Development Fund through Tillvaxtverket (Project PEA-PPP)

Tillgänglig från: 2014-09-15 Skapad: 2014-09-12 Senast uppdaterad: 2017-12-05Bibliografiskt granskad
Ingår i avhandling
1. Addressability and GHz Operation in Flexible Electronics
Öppna denna publikation i ny flik eller fönster >>Addressability and GHz Operation in Flexible Electronics
2016 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

The discovery of conductive polymers in 1977 opened up a whole new path for flexible electronics. Conducting polymers and organic semiconductors are carbon rich compounds that are able to conduct charges while flexed and are compatible with low-cost and large-scale processes including printing and coating techniques. The conducting polymer has aided the rapidly expanding field of flexible electronics, leading to many new applications such as electronic skin, RFID tags, smart labels, flexible displays, implantable medical devices, and flexible sensors.

However, there are several remaining challenges in the production and implementation of flexible electronic materials and devices. The  conductivity of organic conductors and semiconductors is still orders of magnitude lower compared to their inorganic counterparts. In addition, non-flexible inorganic semiconductors still remain the materials of choice for high frequency applications; since the charge carrier mobility and thus operational speed of the organic materials are limited. Therefore, there remains a high demand to combine the high frequency operation of inorganic semiconductors with the flexible fabrication methods of organic systems for future electronics.

In addition to the challenges in the choice of materials in flexible electronics, the upscaling of the flexible devices and implementing them in circuits can also be complicated. Lack of non-linearity is an issue that arises when flexible devices with linear behavior need to be incorporated in an array or matrix form. Non-linearity is important for applications such as displays and memory arrays, where the devices are arranged as matrix cells addressed by their row and column number. If the behavior of cells in the matrix is linear, addressing each cell affects the adjacent cells. Therefore, inducing non-linearity and, consequently, addressability in such linear devices is the first step before scaling up into matrix schemes.

In this work, non-linear organic/inorganic hybrid devices are produced to overcome the limitations mentioned above and leverage the advantages of both organic and inorganic materials. Two novel methods are developed to incorporate non-flexible inorganic semiconductors into ultra-high frequency (UHF) flexible devices. In the first method, Si is ground into a powder with micrometer-sized particles and printed through standard screen printing. For the first time, allprinted flexible diodes operating in the GHz range are produced. The energy harvesting application of the printed diodes is demonstrated in a flexible circuit coupling an antenna and the display to the diode.

A second and simpler room-temperature method based on lamination was later developed, which further improves device performance and operational frequency. For the first time, a flexible semiconducting composite film consisting of Si micro-particles, glycerol, and nano-fibrillated cellulose is produced and used as the semiconducting layer of the UHF diode.

The diodes fabricated through both mentioned processes are demonstrated in energy harvesting applications in the GHz range; however, they can also serve as rectifiers or non-linear elements in any other flexible and UHF circuit.

Furthermore, a new approach is developed to induce non-linearity and hence addressability in linear devices in order to make their implementation in flexible matrix form feasible. This is accomplished by depositing a ferroelectric layer on a device electrode and thus controlling charge transfer through the electrode. The electrode current becomes limited to the charge displacement current established in the ferroelectric layer during polarization. Thus, the current does not follow the voltage linearly and non-linearity is induced in the device. The polarization voltage is dictated by the thickness of the ferroelectric layer. Therefore, the switching voltage of the device can be tuned by adjusting the ferroelectric layer thickness. In this work, the organic ferroelectric poly(vinylidene fluoride-co-trifluoroethylene) (P(VDF-TrFE)) is used due to its distinctive properties such as stability, high polarizability and simple processability. The polarization of P(VDF-TrFE) through an electrolyte and an electrophoretic liquid is investigated. In addition, a simple model is presented in order to understand the field and potential distribution, and the ferroelectric polarization, in the P(VDF-TrFE)-electrolyte contact. The induction of non-linearity through P(VDF-TrFE) is successfully demonstrated in novel addressable and bistable devices and memory elements such as non-linear electrophoretic display cells, organic ferroelectrochromic displays (FeOECDs), and ferroelectrochemical organic transistors (FeOECTs).

Ort, förlag, år, upplaga, sidor
Linköping: Linköping University Electronic Press, 2016. s. 58
Serie
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1761
Nationell ämneskategori
Fysik Den kondenserade materiens fysik Textil-, gummi- och polymermaterial Materialkemi Annan elektroteknik och elektronik Polymerkemi
Identifikatorer
urn:nbn:se:liu:diva-127014 (URN)10.3384/diss.diva-127014 (DOI)978-91-7685-777-9 (ISBN)
Disputation
2016-05-13, K3, Kåkenhus, Campus Norrköping, Norrköping, 10:15 (Engelska)
Opponent
Handledare
Tillgänglig från: 2016-04-12 Skapad: 2016-04-12 Senast uppdaterad: 2019-10-29Bibliografiskt granskad

Open Access i DiVA

fulltext(1604 kB)745 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 1604 kBChecksumma SHA-512
7dcaba3459064e44b16073f17b47ab224d54d9642188859ec4aeb68e68c1537d6065a9cb303438f4654c7dc3b7a3b85b24cd9717b32e70773d69c8e95cb1bc1c
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextPubMed

Personposter BETA

Abdollahi Sani, NegarRobertsson, MatsLiu, XianjieFahlman, MatsCrispin, XavierEngquist, IsakBerggren, Magnus

Sök vidare i DiVA

Av författaren/redaktören
Abdollahi Sani, NegarRobertsson, MatsLiu, XianjieFahlman, MatsCrispin, XavierEngquist, IsakBerggren, Magnus
Av organisationen
Fysik och elektroteknikTekniska högskolanInstitutionen för teknik och naturvetenskapYtors Fysik och Kemi
I samma tidskrift
Proceedings of the National Academy of Sciences of the United States of America
Elektroteknik och elektronikFysik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 745 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 3212 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf