liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Optimisation of an EPR dosimetry system for robust and high precision dosimetry
Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Health Sciences.
Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics.ORCID iD: 0000-0002-4549-8303
Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics.ORCID iD: 0000-0003-0209-498X
Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Diagnostics, Department of Biomedical Engineering.
Show others and affiliations
2014 (English)In: Radiation Measurements, ISSN 1350-4487, E-ISSN 1879-0925, Vol. 70, p. 21-28Article in journal (Refereed) Published
Abstract [en]

Clinical applications of electron paramagnetic resonance (EPR) dosimetry systems demand high accuracy causing time consuming analysis. The need for high spatial resolution dose measurements in regions with steep dose gradients demands small sized dosimeters. An optimization of the analysis was therefore needed to limit the time consumption. The aim of this work was to introduce a new smaller lithium formate dosimeter model (diameter reduced from standard diameter 4.5 mm to 3 mm and height from 4.8 mm to 3 mm). To compensate for reduced homogeneity in a batch of the smaller dosimeters, a method for individual sensitivity correction suitable for EPR dosimetry was tested. Sensitivity and repeatability was also tested for a standard EPR resonator and a super high Q (SHQE) one. The aim was also to optimize the performance of the dosimetry system for better efficiency regarding measurement time and precision. A systematic investigation of the relationship between measurement uncertainty and number of readouts per dosimeter was performed. The conclusions drawn from this work were that it is possible to decrease the dosimeter size with maintained measurement precision by using the SHQE resonator and introducing individual calibration factors for dosimeter batches. It was also shown that it is possible reduce the number of readouts per dosimeter without significantly decreasing the accuracy in measurements.

Place, publisher, year, edition, pages
Elsevier, 2014. Vol. 70, p. 21-28
Keywords [en]
EPR; ESR; Lithium formate; High precision dosimetry; High spatial resolution dosimetry
National Category
Radiology, Nuclear Medicine and Medical Imaging
Identifiers
URN: urn:nbn:se:liu:diva-111088DOI: 10.1016/j.radmeas.2014.08.013ISI: 000345110700005OAI: oai:DiVA.org:liu-111088DiVA, id: diva2:753198
Available from: 2014-10-07 Created: 2014-10-07 Last updated: 2021-10-13Bibliographically approved
In thesis
1. Lithium formate EPR dosimetry for accurate measurements of absorbed dose in radiotherapy
Open this publication in new window or tab >>Lithium formate EPR dosimetry for accurate measurements of absorbed dose in radiotherapy
2014 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Lithium formate has shown to be a material with properties suitable for electron paramagnetic resonance (EPR) dosimetry, among them up to 7 times higher sensitivity compared to alanine, which is a well-established EPR detector material for dose determinations in radiotherapy.

The aim of this thesis was to further investigate the properties of lithium formate and develop the dosimetry system towards applications in radiotherapy. The intrinsic efficiency for energies of relevance to brachytherapy and the signal stability were investigated. The dosimetry system was expanded to include a smaller dosimeter model, suitable for measurements in dose gradient regions. An individual sensitivity correction method was applied to the smaller dosimeters to be able to perform dose determinations with the same precision as for the larger ones. EPR dosimetry in general is time consuming and effort was spent to optimize the signal readout procedure regarding measurement time and measurement precision.

The system was applied in two clinical applications chosen for their high demands on the dosimetry system: 1) a dosimetry audit for external photon beam therapy and 2) dose verification measurements around a low energy HDR brachytherapy source.

The conclusions drawn from this thesis were: dose determinations can be performed with a standard uncertainty of 1.8-2.5% using both the original size dosimeters and the new developed smaller ones. The dosimetry system is robust and useful for applications when high measurement precision and accuracy is prioritized. It is a good candidate for dosimetry audits, both in external beam therapy and brachytherapy.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2014. p. 51
Series
Linköping University Medical Dissertations, ISSN 0345-0082 ; 1417
National Category
Radiology, Nuclear Medicine and Medical Imaging
Identifiers
urn:nbn:se:liu:diva-111091 (URN)10.3384/diss.diva-111091 (DOI)978-91-7519-246-8 (ISBN)
Public defence
2014-11-06, Eken, ingång 65, plan 9, Campus US, Linköpings universitet, Linköping, 09:00 (English)
Opponent
Supervisors
Available from: 2014-10-07 Created: 2014-10-07 Last updated: 2021-10-13Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Adolfsson, EmelieCarlsson Tedgren, ÅsaAlm Carlsson, GudrunGustafsson, HåkanLund, Eva

Search in DiVA

By author/editor
Adolfsson, EmelieCarlsson Tedgren, ÅsaAlm Carlsson, GudrunGustafsson, HåkanLund, Eva
By organisation
Division of Radiological SciencesFaculty of Health SciencesDepartment of Radiation PhysicsCenter for Medical Image Science and Visualization (CMIV)Department of Biomedical Engineering
In the same journal
Radiation Measurements
Radiology, Nuclear Medicine and Medical Imaging

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 1535 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf