liu.seSök publikationer i DiVA
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Functional fabrication of recombinant human collagen–phosphorylcholine hydrogels for regenerative medicine applications
Swedish Medical Nanoscience Center, Karolinska Institutet, Stockholm, Sweden.
Center for Physical Sciences and Technology, Vilnius, Lithuania.
Ottawa Hospital Research Institute, Ontario, Canada.
Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för cellbiologi. Linköpings universitet, Hälsouniversitetet. (Integrative Regenerative Medicine Centre)
Visa övriga samt affilieringar
2015 (Engelska)Ingår i: Acta Biomaterialia, ISSN 1742-7061, E-ISSN 1878-7568, Vol. 12, s. 70-80Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The implant-host interface is a critical element in guiding tissue or organ regeneration. We previously developed hydrogels comprising interpenetrating networks of recombinant human collagen type III and 2-methacryloyloxyethyl phosphorylcholine (RHCIII-MPC) as substitutes of the corneal extracellular matrix that promote endogenous regeneration of corneal tissue. To render them functional for clinical application, we have now optimized their composition and thereby enhanced their mechanical properties. We have demonstrated that such optimized RHCIII-MPC hydrogels are suitable for precision femtosecond laser cutting to produce complementing implants and host surgical beds for subsequent tissue welding. This avoids the tissue damage and inflammation associated with manual surgical techniques, thereby leading to more efficient healing. Although we previously demonstrated in clinical testing that RHCIII-based implants stimulated cornea regeneration in patients, the rate of epithelial cell coverage of the implants needs improvement, e.g. modification of the implant surface. We now show that our 500 μm thick RHCIII-MPC constructs comprising over 85% water, are suitable for microcontact printing with fibronectin. The resulting fibronectin micropatterns promote cell adhesion, as compared to the bare RHCIII-MPC hydrogel. Interestingly, a pattern of 30 μm wide fibronectin stripes enhanced cell attachment and showed highest mitotic rates, an effect that potentially can be utilized for faster integration of the implant. We have therefore shown that laboratory-produced mimics of naturally occurring collagen and phospholipids can be fabricated into robust hydrogels that can be laser profiled and patterned to enhance their potential function as artificial substitutes of donor human corneas.

Ort, förlag, år, upplaga, sidor
Elsevier, 2015. Vol. 12, s. 70-80
Nyckelord [en]
Hydrogel, Cornea, Collagen, Fibronectin, Laser ablation, Surface modification
Nationell ämneskategori
Medicinska och farmaceutiska grundvetenskaper Klinisk medicin
Identifikatorer
URN: urn:nbn:se:liu:diva-111782DOI: 10.1016/j.actbio.2014.10.035ISI: 000348686100008OAI: oai:DiVA.org:liu-111782DiVA, id: diva2:760088
Anmärkning

We thank Dr. Chyan-Jang Lee for establishing the GFP-HCEC cell line used for this study, and Ms. Kimberley Merrett for assistance in characterization of the hydrogels. We also thank Dr. Sadhana Kulkani and David Priest, University of Ottawa Eye Institue, for assistance with the laser cutting study; and Dr. Joanne M. Hackett (currently at Cambridge University Health Partners) for assistance with preliminary cell culture/biocompatibility studies during optimization of the RHCIII-MPC hydrogels. We thank Johannes Junger and Michael Baumann, MLase AG, for help with the UV crosslinking, and the Medical Devices Bureau, Health Canada, for use of the SEM system. We gratefully acknowledge funding from an NSERC-CIHR Canada Collaborative Health Research Project grant (M.G.) and subsequent funding for an EU Nanomedicine ERAnet project "I-CARE" to M.G., R.V. and MLase AG, through the Swedish Research Council, Research Council of Lithuania and VDI Germany, respectively.

Tillgänglig från: 2014-11-03 Skapad: 2014-11-03 Senast uppdaterad: 2018-01-11Bibliografiskt granskad

Open Access i DiVA

fulltext(730 kB)437 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 730 kBChecksumma SHA-512
2059fd6d0e7478f697e96f50d5bb6cac47b68cbee016830e11a8081ba172a82fa914a14450368010bba9cd293634b3609161fec1138d261bc5c225bfcca2e3e0
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltext

Personposter BETA

Islam, Mohammad M.Edin, JoelRafat, MehrdadGriffith, May

Sök vidare i DiVA

Av författaren/redaktören
Islam, Mohammad M.Edin, JoelRafat, MehrdadGriffith, May
Av organisationen
Avdelningen för cellbiologiHälsouniversitetetInstitutionen för medicinsk teknik
I samma tidskrift
Acta Biomaterialia
Medicinska och farmaceutiska grundvetenskaperKlinisk medicin

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 437 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 1215 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf