liu.seSearch for publications in DiVA
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Thermal stability of epitaxial cubic-TiN/(Al,Sc)N metal/semiconductor superlattices
Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska högskolan.
Purdue University, IN 47907 USA; Purdue University, IN 47907 USA.
Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska högskolan.
Helmholtz Zentrum Geesthacht, Germany.
Vise andre og tillknytning
2015 (engelsk)Inngår i: Journal of Materials Science, ISSN 0022-2461, E-ISSN 1573-4803, Vol. 50, nr 8, s. 3200-3206Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

We report on the thermal stability of epitaxial cubic-TiN/(Al,Sc)N metal/semiconductor superlattices with the rocksalt crystal structure for potential plasmonic, thermoelectric, and hard coating applications. TiN/Al0.72Sc0.28N superlattices were annealed at 950 and 1050 A degrees C for 4, 24, and 120 h, and the thermal stability was characterized by high-energy synchrotron-radiation-based 2D X-ray diffraction, high-resolution (scanning) transmission electron microscopy [HR(S)/TEM], and energy dispersive X-ray spectroscopy (EDX) mapping. The TiN/Al0.72Sc0.28N superlattices were nominally stable for up to 4 h at both 950 and 1050 A degrees C. Further annealing treatments for 24 and 120 h at 950 A degrees C led to severe interdiffusion between the layers and the metastable cubic-Al0.72Sc0.28N layers partially transformed into Al-deficient cubic-(Al,Sc)N and the thermodynamically stable hexagonal wurtzite phase with a nominal composition of AlN (h-AlN). The h-AlN grains displayed two epitaxial variants with respect to c-TiN and cubic-(Al,Sc)N. EDX mapping suggests that scandium has a higher tendency for diffusion in TiN/(Al,Sc)N than titanium or aluminum. Our results indicate that the kinetics of interdiffusion and the cubic-to-hexagonal phase transformation place constraints on the design and implementation of TiN/(Al,Sc)N superlattices for high-temperature applications.

sted, utgiver, år, opplag, sider
Springer Verlag (Germany) , 2015. Vol. 50, nr 8, s. 3200-3206
HSV kategori
Identifikatorer
URN: urn:nbn:se:liu:diva-116502DOI: 10.1007/s10853-015-8884-5ISI: 000349969800021OAI: oai:DiVA.org:liu-116502DiVA, id: diva2:798991
Merknad

Funding Agencies|Linkoping University; Swedish Research Council [2011-6505]; National Science Foundation; US Department of Energy [CBET-1048616]

Tilgjengelig fra: 2015-03-27 Laget: 2015-03-27 Sist oppdatert: 2017-12-04

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Personposter BETA

Schroeder, JeremyGarbrecht, MagnusBirch, Jens

Søk i DiVA

Av forfatter/redaktør
Schroeder, JeremyGarbrecht, MagnusBirch, Jens
Av organisasjonen
I samme tidsskrift
Journal of Materials Science

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 319 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf